Distributional Causal Inference: from Estimation to Simulation

Xinwei Shen

October 13, 2025

Department of Statistics, University of Washington

Causal estimands

Treatment X, outcome Y

Average treatment effect
$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$
 \downarrow Quantile treatment effect $q_{lpha}(Y(1)) - q_{lpha}(Y(0))$ \downarrow

Ultimate: potential outcome distribution Y(x)

1

Causal data simulation

Crucial to

- Causal inference model selection and validation
- Sample size calculation for RCT

Because real-world datasets do not give access to ground-truth counterfactuals.

Goal of this talk

Develop methods for

- Estimating the full potential outcome distribution (distributional)
- Simulating data from estimated or specified causal models (generative)

Distribution estimation in classical statistics

Random variables X and Y (X can be empty set)

Target:
$$P_{Y|X=x}$$

Methods: density estimation, quantile regression, distributional regression (Koenker '05; Meinshausen '06; Dunson et al. '07; Hothorn et al. '14), etc.

Drawbacks:

- restrictive parametric assumptions
- high computational cost with large sample sizes
- not scalable to high dimensional responses
- sampling is nontrivial! MCMC

Generative AI

Same goal: to learn a distribution by generating new samples from it.

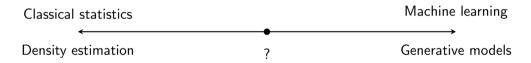
Methods: diffusion models, generative adversarial networks, etc.

Images generated by DALL-E 3 (openai.com)

Excellent for images, texts, video. What about scientific data, clinical data, etc?

5

Distribution estimation



as simple as classical stat methods as flexible as machine learning methods

Distributional learning via generative models

- Target: conditional distribution of Y|X
- Build a **generative model** to describe the distribution of Y|X:

$$Y = g(X, \varepsilon)$$

where $\varepsilon \sim P_{\varepsilon}$ pre-defined and map $g:(x,\varepsilon)\mapsto y$ is often parametrized by neural networks.

- Goal: find g such that $g(x,\varepsilon) \sim P_{Y|X=x}$ for any x
- \circ Sampling-based inference: a model to sample from $P_{Y|X=x}$

7

Proper scoring rule

• Given a distribution P and an observation z, the energy score¹ is defined as

$$\mathsf{ES}(P,z) = \frac{1}{2} \mathbb{E}_{(Z,Z') \sim P \otimes P} \|Z - Z'\|_2 - \mathbb{E}_P \|Z - z\|_2.$$

• Strictly proper scoring rule: for any P, we have $\mathbb{E}_{Z \sim P^*}[\mathsf{ES}(P, Z)] \leq \mathbb{E}_{Z \sim P^*}[\mathsf{ES}(P^*, Z)]$, where "=" $\Leftrightarrow P = P^*$.

8

¹Gneiting and Raftery, 2007

Our distributional learning method

• Engression:1

$$\begin{split} \tilde{g} &\in \operatorname*{argmin}_{g \in \mathcal{G}} \mathbb{E}_{(X,Y) \sim P}[-\mathsf{ES}(P_g(.|X),Y)] \\ &= \operatorname*{argmin}_{g \in \mathcal{G}} \mathbb{E}\Big[\|Y - g(X,\varepsilon)\|_2 - \frac{1}{2}\|g(X,\varepsilon) - g(X,\varepsilon')\|_2\Big] \end{split}$$

where $P_g(.|x)$ is the distribution of $g(x,\varepsilon)$ and ε,ε' are independent draws from $\mathcal{N}(0,I)$.

• **Proposition**: under correct model specification, we have $\tilde{g}(x, \varepsilon) \sim P_{Y|X=x}$, $\forall x \in \text{supp}(P_X)$.

¹S. and Meinshausen, "Engression: Extrapolation through the Lens of Distributional Regression," *JRSSB*, 2024

Estimation of the functionals

Monte Carlo: for a fixed test point x,

- **1** Draw a sample of ε , i.e., $\varepsilon_1, \ldots, \varepsilon_m$;
- ② Then $\tilde{g}(x, \varepsilon_i)$, i = 1, ..., m is a sample of the estimated distribution of Y|X = x;
- Obtain estimators:
 - o conditional mean estimation: $\hat{\mathbb{E}}_{\varepsilon}[\tilde{g}(x,\varepsilon)]$
 - \circ conditional lpha-quantile estimation: $\hat{Q}_{lpha}(\tilde{g}(x,arepsilon))$

Our Python and R packages¹

R:

```
Python:

> from engression import engression

> engressor = engression(X, Y)

> engressor.predict(Xtest, target="mean")

> engressor.predict(Xtest, target=[0.025, 0.5, 0.975])

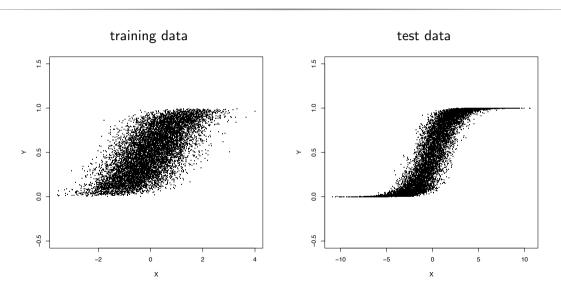
> engressor.sample(Xtest, sample_size=100)

## quantile prediction

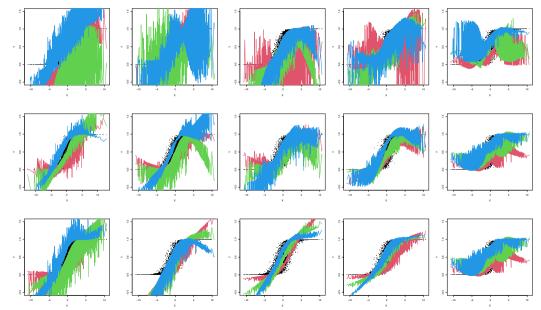
## sampling
```

¹http://github.com/xwshen51/engression

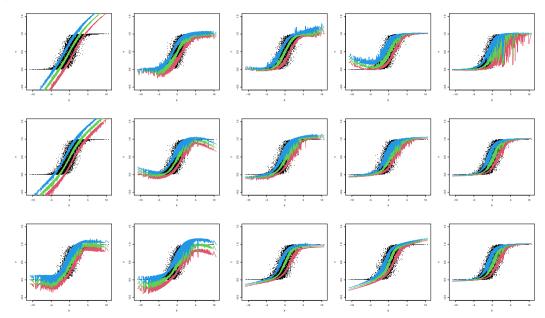
Numerical example

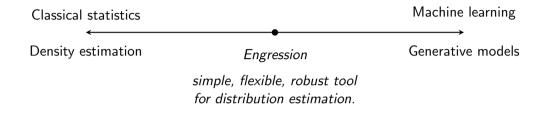


 $NN\ quantile\ regression.\ Top\ to\ bottom:\ 10,100\ and\ 1000\ hidden\ dimension.\ Left\ to\ right:\ 2,3,5,10\ and\ 20\ layers.$



Engression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.





Flexible compared to classical stat methods:

- expressive capacity of neural networks alleviates limitations of parametric model specifications
- \circ scalable to (very) high-dimensional X and Y
- no quantile crossing

Simple compared to modern generative models:

- computationally lighter: one-step sampling, no discriminator/minmax
- fewer tuning parameters
- focus on downstream estimation and inference

Causal estimation and simulation

Objectives

- Estimating the full potential outcome distribution
- Simulating data from estimated or specified causal models

Setting I:

- instrumental variables
- existence of hidden confounder
- need to model latent confounding

Holovchak, Saengkyongam, Meinshausen, S., "Distributional Instrumental Variable Method," arXiv:2502.07641

Setting II:

- observed covariates (confounder or mediator)
- parametrization around the causal margin
- simulating data from specified causal margin

Yang, Evans, S., "Frugal, Flexible, Faithful: Causal Data Simulation via Frengression," arXiv:2508.01018

Distributional Instrumental Variable Method

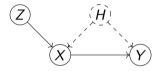
Anastasiia Holovchak, Sorawit Saengkyongam, Nicolai Meinshausen, Xinwei Shen

ETH Zurich

Instrumental variable model

Treatment X, outcome Y, instrumental variable Z.

$$X \leftarrow g(Z, \eta_X)$$
$$Y \leftarrow f(X, \eta_Y)$$



where f, g can be nonlinear, and η_X and η_Y are correlated due to latent confounder H.

What would happen if everyone were given treatments X = x? i.e.

Estimand: do-interventional distribution P(Y|do(X=x)) or P(Y(x))

Identifiability of the estimand

Assume for all $z \in \operatorname{supp}(Z)$, $g(z,\cdot)$ is strictly monotone, and for all $x \in \operatorname{supp}(X)$, $\operatorname{supp}(\eta_X|X = x) = \operatorname{supp}(\eta_X)$. Then, for all $x \in \operatorname{supp}(X)$, the interventional distribution P(Y|do(X := x)) is uniquely determined from the observed data distribution $P_{\operatorname{obs}}(x,y|z)$.

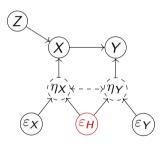
Estimate
$$P_{\text{obs}}(x, y|z) \stackrel{\text{sufficient}}{\Rightarrow} \text{identify } P(Y|do(X := x))$$

Distributional instrumental variable (DIV) model

Joint generative model:

$$\eta_X = h_X(\varepsilon_X, \varepsilon_H)
\eta_Y = h_Y(\varepsilon_Y, \varepsilon_H)
X = g(Z, \eta_X)
Y = f(X, \eta_Y)$$
confounded noises

where $\varepsilon_X, \varepsilon_Y, \varepsilon_H$ are independent standard Gaussians.



Distributional instrumental variable (DIV) estimation

DIV solution (engression applied to (X, Y)|Z):

$$\underset{f,g,h_X,h_Y}{\text{argmin}} \ \mathbb{E}\left[\|(X,Y) - (\hat{X},\hat{Y})\|_2 - \frac{1}{2}\|(\hat{X},\hat{Y}) - (\hat{X}',\hat{Y}')\|_2\right],$$

where

$$\hat{X} := g(Z, h_X(\varepsilon_X, \varepsilon_H)) \qquad \hat{Y} := f(\hat{X}, h_Y(\varepsilon_Y, \varepsilon_H))
\hat{X}' := g(Z, h_X(\varepsilon_X', \varepsilon_H')) \qquad \hat{Y}' := f(\hat{X}', h_Y(\varepsilon_Y', \varepsilon_H'))$$

Estimation of the interventional distribution and its functionals

DIV solution f^* , h_Y^* enables sampling from the interventional distribution:

$$f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H)) \sim P(Y|do(X = x)), \quad \forall x.$$

Estimation of the interventional mean function

$$\mu^*(x) := \mathbb{E}[f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H))].$$

Average causal effect: $\mu^*(x_1) - \mu^*(x_0)$

Estimation of the interventional quantile function

$$q_{\alpha}^*(x) := Q_{\alpha}[f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H))].$$

Quantile treatment effect: $q_{\alpha}^*(x_1) - q_{\alpha}^*(x_0)$

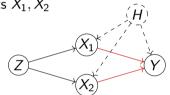
Sometimes,

"Under-identified" case

 \circ One binary IV $Z \in \{0,1\}$, two continuous treatments $\textit{X}_{1},\textit{X}_{2}$

$$X_1 = g_1(Z, \eta_1)$$

 $X_2 = g_2(Z, \eta_2)$
 $Y = \frac{\beta_1}{2}X_1 + \frac{\beta_2}{2}X_2 + \eta_Y$



- Two-stage least-squares would **fail** as $\mathbb{E}[X_1|Z]$ and $\mathbb{E}[X_2|Z]$ are collinear.
- Distributional identifiability holds:

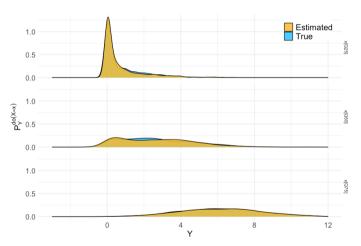
Theorem. Assume $(X_i|Z=0) \neq (c+X_i|Z=1)$, for any constant c, for i=1,2. Then β_1 and β_2 are uniquely determined from $P_{\text{obs}}(x_1,x_2,y|z)$.

R and python packages

R demo:

```
library(distributionIV)
model \leftarrow div(Z = Z, X = X, Y = Y, num_epochs = 100)
## Interventional mean estimation -----
Yhat <- predict(object = model, Xtest = Xtest, type = "mean")</pre>
## Interventional quantile estimation ------
Yhat_quant <- predict(object = model, Xtest = Xtest, type = "quantile")</pre>
## Sampling from estimated interventional distribution ------
Ysample <- predict(object = model, Xtest = Xtest, type = "sample", nsample = 1)
```

Illustrative example of DIV



Histograms of P(Y|do(X=x)) for different x

Conditional interventional distribution

Target:

$$P(Y|do(X=x), W=w)$$

with additional exogenous covariates W. Used for heterogeneous treatment effect estimation.

Augmented joint generative model:

$$X = g(Z, W, \eta_X)$$
$$Y = f(X, W, \eta_Y)$$

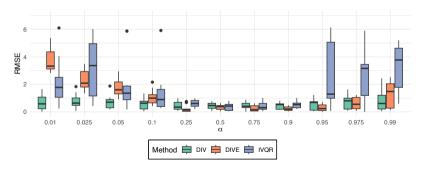
• Learn the DIV model to fit the joint distribution of (X, Y)|Z, W.

Simulation I: quantile treatment effect estimation

Setting: $Z, H, \varepsilon_X, \varepsilon_Y \sim \text{Logistic}(0,1)$ mutually independent; binary treatment $X = 1\{4Z + 4H > \varepsilon_X\}$;

 $Y = 2 + (X + 1)^2 + 3(X + 1) + 2H + \varepsilon_Y$.

Estimand: lpha-quantile treatment effect $q_lpha^*(1) - q_lpha^*(0)$



Baseline methods: DIVE (Kook and Pfister 24'), IVQR (Chernozhukov and Hansen 05')

Simulation II: interventional mean estimation in an 'under-identified' case

Setting: $Z \sim \text{Unif}(-3,3)$, $H, \varepsilon_X, \varepsilon_Y \sim \text{Unif}(-1,1)$ mutually independent, $\alpha \in \mathbb{R}$ is a tuning parameter; $X = Z(\alpha + 2H + \varepsilon_X)$, $Y = (1 + \exp(-(X + 2H + \varepsilon_Y)/3))^{-1}$.

It holds $\mathbb{E}(X|Z) = \alpha Z$ and $\text{Var}(X|Z) = \frac{5}{3}Z^2$, where α controls the dependence of the conditional mean of the treatment X on the instrument Z.

	$\alpha = 0$	$\alpha = 1$	$\alpha = 5$
DIV	0.002	0.002	0.002
HSIC-X	2.693	0.333	0.344
CF linear	141.941	0.476	1.625
CF nonlinear	2.762	0.243	0.057
DeepGMM	1.158	0.274	0.005
DeepIV	0.675	0.305	0.102

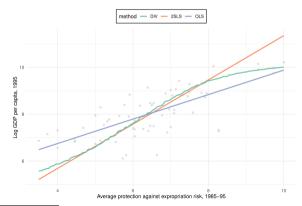
Table: MSE of the estimated interventional mean functions.

Baselines: CF (Heckman, 76, Newey et al., 99, Guo & Small, 16); DeeplV (Hartford et al., 17); DeepGMM (Bennett et al., 20); HSIC-X (Saengkyongam et al., 22)

Economic data¹

X: institutional quality — the average protection against expropriation risk (1985-1995)

Y: log GDP per capita (1995)



¹D. Acemoglu, S. Johnson, and J. A. Robinson. The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5):1369-1401, December 2001

Takeaways about DIV

A distributional approach for causal inference in the IV settings

- o Can easily handle multi-variate treatments, outcomes, covariates
- More identification than mean approaches (2SLS)
- Estimate the full interventional distribution
- Enable sampling of (single) counterfactuals

Frugal, Flexible, Faithful: Causal Data Simulation via Frengression

Linying Yang, Robin J. Evans, and Xinwei Shen

University of Oxford

Causal margin

Treatments X, outcome Y, observed covariates Z

Central interest: marginal interventional distribution P(Y|do(X=x))

Objectives:

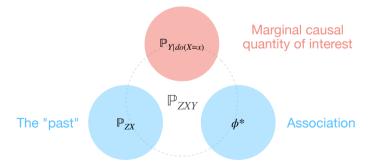
- \circ Parametrization: describe the joint distribution of X,Y,Z around the causal margin
- Estimation: allow for fitting the distribution and its functionals
- Simulation: obtain samples from distributions that obey specified causal structures

Parametrization

Desiderata:

- Specify the joint distribution of $X, Y, Z \checkmark$
- A marginal structural model for P(Y|do(X=x))
- Can be chosen to be variation independent
- Nonparametric, flexible model class (that allows sampling) X

Frugal parametrization (Evans and Didelez, 2024): parametric

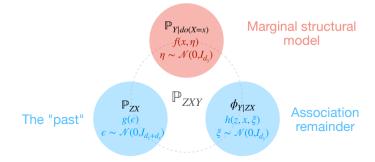


Frengression

Desiderata:

- Specify the joint distribution of $X, Y, Z \checkmark$
- A marginal structural model for P(Y|do(X := x))
- Can be chosen to be variation independent
- Nonparametric, flexible model class (that allows sampling) ✓

Generative, nonparametric extension of frugal parametrization:



Frengression fitting

• "Past" model (objective: match P_{ZX})

$$\underset{g}{\operatorname{argmin}} \mathbb{E} \big[\| (Z, X) - g(\epsilon) \| - \frac{1}{2} \| g(\epsilon) - g(\epsilon') \| \big]$$

- Causal margin and association remainder
 - objective I: $f(X, \widetilde{\eta})|Z, X$ matches the conditional $P_{Y|ZX}$, with $\widetilde{\eta}$ drawn from $P_{\widetilde{\eta}|Z, X}$
 - objective II: $\widetilde{\eta}|do(X=x)$ follows the standard normal, as chosen, for any x.

$$\underset{f,h}{\operatorname{argmin}} \ \mathbb{E} \big[\| Y - f(X, \tilde{\eta}) \| - \frac{1}{2} \| f(X, \tilde{\eta}) - f(X, \tilde{\eta}') \| \big] \ + \ \frac{\mathbb{E} \big[\| \eta - \bar{\eta} \| - \frac{1}{2} \| \bar{\eta} - \bar{\eta}'' \| \big]}{n} \,,$$

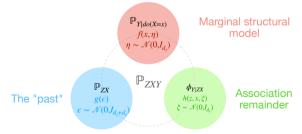
where $\widetilde{\eta}=h(Z,X,\xi)$, $\widetilde{\eta}'=h(Z,X,\xi')$, $\overline{\eta}=h(\bar{Z},\bar{X},\xi'')$, and $\overline{\eta}'=h(\bar{Z}',\bar{X},\xi''')$ with $\eta\sim\mathcal{N}(0,I_{d_y})$, ξ,ξ',ξ'',ξ''' $\overset{\mathrm{i.i.d.}}{\sim}\mathcal{N}(0,I_{d_y})$, $(Z,X)\sim\mathbb{P}_{ZX}$, $\bar{X}\sim\mathbb{P}_X$ and \bar{Z},\bar{Z}' $\overset{\mathrm{i.i.d.}}{\sim}\mathbb{P}_{Z|X_0}$.

Theoretical guarantee

Under identifiability conditions¹ and well specified models, the frengression solution satisfies:

$$g^*(\epsilon) \sim \mathbb{P}_{ZX}$$
 $f^*(x, \eta) \sim \mathbb{P}_{Y|do(X=x)}$
 $f^*(x, h^*(z, x, \xi)) \sim \mathbb{P}_{Y|Z=z, X=x}$

for all $x \in \mathcal{X}$ and $z \in \mathcal{Z}$.



¹Consistency, unconfoundeness and positivity (possibly relaxed)

Sampling

- ② Simulate $\widehat{Y}(x) \sim P_{Y|do(X=x)}$. For a treatment value x, draw $\eta \sim \mathcal{N}(0, I_{d_y})$ and compute $\widehat{Y}(x) = f^*(x, \eta)$.
- **3** Simulate $(\widehat{Z}, \widehat{X}, \widehat{Y}) \sim P_{ZXY}$.
 - Generate $(\widehat{Z}, \widehat{X})$ as in step 1.
 - ② Draw $\xi \sim \mathcal{N}(0, I_{d_y})$ and obtain $\widetilde{\eta} = h^*(\widehat{Z}, \widehat{X}, \xi)$.
 - **3** Produce the response via $\widehat{Y} = f^*(\widehat{X}, \widetilde{\eta})$.
- **3** Simulate $(\widehat{Z}, \widehat{X}, \widehat{Y}(x'))$ from single world intervention graphs distributions (Richardson and Robins, '13)
 - Generate $(\widehat{Z}, \widehat{X})$ and obtain $\widetilde{\eta} = h^*(\widehat{Z}, \widehat{X}, \xi)$.
 - **2** Produce the response via $f^*(x', \tilde{\eta})$ with a specified x'.

 f^* can be replaced by a specified causal margin, while keeping remaining the same.

LEADER trial

Large, randomized, double-blind, placebo-controlled cardiovascular outcomes trial

- 9340 patients with type 2 diabetes at high cardiovascular risk.
- Randomized to liraglutide (up to 1.8 mg daily) vs. placebo, both with standard care.
- Follow-up: range 3.55 years.
- Primary endpoint: Time to first major adverse cardiovascular event (MACE).
- Fewer MACE events in liraglutide group (Marso et al., '16).

CURRENT ISSUE V SPECIALTIES V TOPICS V

Liraglutide and Cardiovascular Outcomes in Type 2

Diabetes

Authors: Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandern, M.D., Peter Kristensen, M.D., E.M.B.A., Johannes F.E. Mann, M.D., Michael A. Nauck, M.D., Steven E. Nissen, M.D., 42

, for the LEADER Steering Committee on behalf of the LEADER Trial Investigations*

Author Info & Affiliations

Published July 28, 2016 | N Engl J Med 2016;375:311-322 | DOI: 10.1056/NEJMoa1603827 | <u>VOL. 375.NO. 4</u>
Copyright. ©. 2016

Trial data structure

Covariates

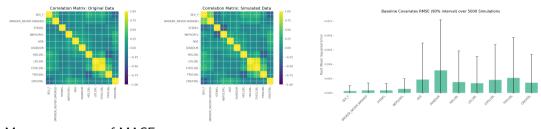
- Binary (4): Gender, smoker status, carotid stenosis > 50
- Continuous (7): Age, diabetes duration (months), HDL, LDL, total cholesterol, triglycerides, serum creatinine
- Time-varying (3): HbA1c (every 6mo), BMI, eGFR (at select timepoints)

Longitudinal data structure

- Timeline split into 6-month intervals (max 60 months; T=11 discrete timepoints)
- Outcome (event indicator): $Y_t = 1(t \ge k)$ where k is the event time.
- No records to be tracked after the event occurs.

Frengression faithfully captures both covariate structures and event frequencies

Correlation heatmap of baseline covariates, true (left) vs. simulated data (middle); RMSEs (right)



- Mean occurrence of MACE:
 True data: 14.1% placebo arm; 12.6% liraglutide.
 Frengression: (over 5000 simulations) 14.3% with 90% interval [13.5%, 15.2%] placebo arm; 12.9% with 90% interval [12.1%, 13.8%] liraglutide arm.
- Logistic classifiers to distinguish real observations from simulated ones.
 AUC 0.5 for baseline covariates, 0.55 for the joint distributions ⇒ nearly indistinguishable

Distributional Causal Inference

Objectives:

- Estimation of the interventional distributions
- Simulation from estimated or specified causal models

Methods:

- Foundation: engression, a simple yet flexible generative method for distribution estimation
- DIV: engression + IV
- Frengression: engression + frugal parametrization

Favorable features:

- Nonparametric (NN)
- Computational scalable to high-dim
- Softwares with very light hyper-parameter tuning