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Causal estimands

Treatment X, outcome Y

Average treatment effect E[Y(1)] — E[Y/(0)]

1
Quantile treatment effect g, (Y (1)) — ga(Y(0))

!

Ultimate: potential outcome distribution Y'(x)



Causal data simulation

Crucial to
o Causal inference model selection and validation

o Sample size calculation for RCT

Because real-world datasets do not give access to ground-truth counterfactuals.
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Goal of this talk

Develop methods for
o Estimating the full potential outcome distribution (distributional)

o Simulating data from estimated or specified causal models (generative)



Distribution estimation in classical statistics

Random variables X and Y (X can be empty set)
Target: Py x—x

Methods: density estimation, quantile regression, distributional regression (Koenker '05;
Meinshausen '06; Dunson et al. '07; Hothorn et al. '14), etc.

Drawbacks:

o restrictive parametric assumptions

o

high computational cost with large sample sizes
o not scalable to high dimensional responses

sampling is nontriviall MCMC

o



Generative Al

Same goal: to learn a distribution by generating new samples from it.

Methods: diffusion models, generative adversarial networks, etc.
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Excellent for images, texts, video. What about scientific data, clinical data, etc?



Distribution estimation

Classical statistics Machine learning

Density estimation ? Generative models
as simple as classical stat methods
as flexible as machine learning methods
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Distributional learning via generative models

Target: conditional distribution of Y|X

Build a generative model to describe the distribution of Y|X:
Y =g(X,¢)

where ¢ ~ P, pre-defined and map g : (x,¢) + y is often parametrized by neural networks.
Goal: find g such that g(x,e) ~ Py|x— for any x

Sampling-based inference: a model to sample from Py|x_,



Proper scoring rule

o Given a distribution P and an observation z, the energy score! is defined as
1
ES(P,Z) = EE(ZZ/)N,D@,DHZ — Z,”Q — EPHZ — ZHQ.

o Strictly proper scoring rule: for any P, we have Ez. p«[ES(P, Z)] < Ez.p«[ES(P*, Z)],
where "=" & P = P*.

1Gneiting and Raftery, 2007



Our distributional learning method

o Engression:!

g S argmin E(X7y)NP[—ES(Pg(.‘X), Y)]
geg
. 1
= argminE|[|Y — g(X,¢)ll2 — 5 lg(X,e) — g(X,€)|2
geg 2

where Pg(.|x) is the distribution of g(x,¢) and ¢,¢” are independent draws from A/(0, /).

o Proposition: under correct model specification, we have g(x, €) ~ Py |x—, Vx € supp(Px).

!S. and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024



Estimation of the functionals

Monte Carlo: for a fixed test point x,
© Draw asample of ¢, i.e., €1,...,6m;
@ Then g(x,&;), i =1,...,mis a sample of the estimated distribution of Y|X = x;

© Obtain estimators:
o conditional mean estimation: K.[Z(x, )]

3
o conditional a-quantile estimation: Q4 (&(x,¢))
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Our Python and R packages!

##
##
##

##

##
##
##
##
##

> library(engression)

> engressor = engression(X, Y)

> predict(engressor, Xtest, type="mean")

> predict(engressor, Xtest, type="quantile", quantiles=c(0.025, 0.5, 0.975))##
> predict(engressor, Xtest, type="sample", nsample=100)
Python:

> from engression import engression

> engressor = engression(X, Y)

> engressor.predict(Xtest, target="mean")

> engressor.predict(Xtest, target=[0.025, 0.5, 0.975])
> engressor.sample(Xtest, sample_size=100)

1http://github.com/sthenSl/engression

load engression package
fit an engression model
mean prediction
quantile prediction
sampling

load engression package
fit an engression model
mean prediction
quantile prediction
sampling
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http://github.com/xwshen51/engression

Numerical example
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NN quantile regression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.
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Engression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.
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Classical statistics Machine learning

Density estimation Engression Generative models

simple, flexible, robust tool
for distribution estimation.

Flexible compared to classical stat methods: Simple compared to modern generative models:
o expressive capacity of neural networks alleviates o computationally lighter:
limitations of parametric model specifications one-step sampling, no discriminator/minmax
o scalable to (very) high-dimensional X and Y o fewer tuning parameters

o no quantile crossing o focus on downstream estimation and inference



Causal estimation and simulation

Objectives

o Estimating the full potential outcome distribution

o Simulating data from estimated or specified causal models

Setting I:
o instrumental variables
o existence of hidden confounder

o need to model latent confounding

Holovchak, Saengkyongam, Meinshausen, S.,
“Distributional Instrumental Variable Method,”
arXiv:2502.07641

Setting Il:
o observed covariates (confounder or mediator)
o parametrization around the causal margin

o simulating data from specified causal margin

Yang, Evans, S.,

“Frugal, Flexible, Faithful: Causal Data Simulation via
Frengression,”

arXiv:2508.01018
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Distributional Instrumental Variable Method

Anastasiia Holovchak, Sorawit Saengkyongam, Nicolai Meinshausen, Xinwei Shen

ETH Zurich
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Instrumental variable model

Treatment X, outcome Y, instrumental variable Z.

X < g(Z,nx)
Y f(X777Y)

where f, g can be nonlinear, and nx and ny are correlated due to latent confounder H.

What would happen if everyone were given treatments X = x7 i.e.

Estimand: do-interventional distribution P(Y|do(X = x)) or P(Y(x))
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|dentifiability of the estimand

Assume for all z € supp(Z), g(z,-) is strictly monotone, and for all x € supp(X), supp(nx|X =
x) = supp(nx). Then, for all x € supp(X), the interventional distribution P(Y|do(X := x)) is
uniquely determined from the observed data distribution P,ps(x, y|z).

sufficient

V7 Estimate Pops(x, y|z) ™" identify P(Y|do(X = x))
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Distributional instrumental variable (DIV) model

Joint generative model:
nx = hx(ex,en)
ny = hy(ey.en)
X = g(Z,nx) X ==Y )

& e

where ex, ey, ey are independent standard Gaussians.

} confounded noises

20



Distributional instrumental variable (DIV) estimation

DIV solution (engression applied to (X, Y)|Z):

. ') A~ ]_ A A A A
argmin £ ”(X? Y)_( aY)||2_§”(X7 Y)_(le Y/)H2 )

f.g,hx,hy
where
X = g(Z, hx(ex,en)) V= f(X, hy(ev,en))
X'=g(Z hx(ex.el) V= F(X by (el eh))
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Estimation of the interventional distribution and its functionals

DIV solution f*, h}, enables sampling from the interventional distribution:

F*(x, by (ey,en)) ~ P(Y|do(X = x)), Vx.

o Estimation of the interventional mean function
p*(x) == E[f*(x, hy(ev,en))]-

Average causal effect: p*(x1) — u*(xo)

o Estimation of the interventional quantile function
Ga(x) := Qalf*(x, hy(ey,en))]-

Quantile treatment effect: ¢ (x1) — g% (x0)



Sometimes,

\Q— Estimate Pobs(X7y‘Z)

WL identify P(Y|do(X = x))

necessary
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“Under-identified” case

o One binary IV Z € {0,1}, two continuous treatments X1, X» 7N
X1 :gl(Z,nl) @’ , ‘\
Xo = g2(Z,m2) @< >®
Y = B1Xi + 5o Xo +ny @

o Two-stage least-squares would fail as E[X;|Z] and E[X;|Z] are collinear.

o Distributional identifiability holds:

Theorem. Assume (X;|Z = 0) ;crié (c + Xi|Z = 1), for any constant c, for
i =1,2. Then 1 and (2 are uniquely determined from Pops(x1, x2, y|z).

|
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R and python packages

R demo:

library(distributionIV)
model <- div(Z = Z, X = X, Y = Y, num_epochs = 100)

## Interventional mean estimation --------—-"----—-""""""""""""""""""""--—
Yhat <- predict(object = model, Xtest = Xtest, type = "mean")

## Interventional quantile estimation ---—---------———-————————————————————
Yhat_quant <- predict(object = model, Xtest = Xtest, type = "quantile")

## Sampling from estimated interventional distribution ---——-7-----77--——-
Ysample <- predict(object = model, Xtest = Xtest, type = "sample", nsample = 1)



[llustrative example of DIV

PdYo(X=x)
=)
o

Estimated

True

0 4 8
Y

Histograms of P(Y|do(X = x)) for different x

[szolx

losolx

(5ol
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Conditional interventional distribution

Target:
P(Y|do(X = x), W = w)

with additional exogenous covariates W. Used for heterogeneous treatment effect estimation.

o Augmented joint generative model:

X =g(Z,W,nx)
Y = f(X7 W,ny)

o Learn the DIV model to fit the joint distribution of (X, Y)|Z, W.

27



Simulation I: quantile treatment effect estimation

Setting: Z, H,ex,ey ~ Logistic(0, 1) mutually independent; binary treatment X = 1{4Z + 4H > ex};
Y =2+ (X+1)°+3(X +1)+2H +ey.

Estimand: a-quantile treatment effect g% (1) — g (0)

6

RMSE

0.025 0.975 0.99

:JJﬁHmmuuhh

Method B3 oiv B9 pive ES IVOR|

Baseline methods: DIVE (Kook and Pfister 24"), IVQR (Chernozhukov and Hansen 05)
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Simulation Il: interventional mean estimation in an ‘under-identified’ case

Setting: Z ~ Unif(—3,3), H,ex,ey ~ Unif(—1,1) mutually independent, o € R is a tuning parameter;
X =Z(a+2H+ex), Y =1 +exp(—(X +2H +¢ey)/3))" L.

It holds E(X|Z) = aZ and Var(X|Z) = 272, where a controls the dependence of the
conditional mean of the treatment X on the instrument Z.

a=0 a=1 a=5

DIV 0.002 0.002 0.002
HSIC-X 2.693 0.333 0.344
CF linear 141941 0476 1.625
CF nonlinear 2.762 0.243 0.057
DeepGMM 1.158 0.274 0.005
DeeplV 0.675 0.305 0.102

Table: MSE of the estimated interventional mean functions.

Baselines: CF (Heckman, 76, Newey et al., 99, Guo & Small, 16); DeeplV (Hartford et al., 17); DeepGMM (Bennett
et al., 20); HSIC-X (Saengkyongam et al., 22)



Economic datal

X: institutional quality — the average protection against expropriation risk (1985-1995)
Y: log GDP per capita (1995)

method DIV 2sLs oLs

Log GDP per capita, 1995

4 10

6 8
Average protection against expropriation risk, 1985-95

p. Acemoglu, S. Johnson, and J. A. Robinson. The colonial origins of comparative development: An empirical investiga-

tion. American Economic Review, 91(5):1369-1401, December 2001 20



Takeaways about DIV

A distributional approach for causal inference in the IV settings

o

Can easily handle multi-variate treatments, outcomes, covariates

o

More identification than mean approaches (2SLS)

Estimate the full interventional distribution

o

o

Enable sampling of (single) counterfactuals
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Frugal, Flexible, Faithful:
Causal Data Simulation via Frengression

Linying Yang, Robin J. Evans, and Xinwei Shen

v

: L)
University of Oxford
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Causal margin

Treatments X, outcome Y, observed covariates Z

Central interest: marginal interventional distribution P(Y|do(X = x)) |

Objectives:
o Parametrization: describe the joint distribution of X, Y, Z around the causal margin
o Estimation: allow for fitting the distribution and its functionals

o Simulation: obtain samples from distributions that obey specified causal structures
33



Parametrization

Desiderata:
o Specify the joint distribution of X, Y, Z
A marginal structural model for P(Y|do(X = x))
Can be chosen to be variation independent
Nonparametric, flexible model class (that allows sampling) X

o O O

Frugal parametrization (Evans and Didelez, 2024): parametric

P Y|do(X=x)

|]:DZXY



Frengression

Desiderata:
o Specify the joint distribution of X, Y, Z
A marginal structural model for P(Y|do(X := x))
Can be chosen to be variation independent
Nonparametric, flexible model class (that allows sampling)

o O O

Generative, nonparametric extension of frugal parametrization:

P Y|do(X=x)

Jfeen)
n~ NOd,)

P
|FDZX' 2,94 ¢Y|ZX
g(e) h(z,x, &)
€~ N0y pq) £~ HOy)
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Frengression fitting

o “Past” model (objective: match Pzx)
. 1
argmin E[[(Z,X) - g(e)ll - Slele) = g()ll]

o Causal margin and association remainder
o objective | : f(X,7)|Z, X matches the conditional Py zx, with 77 drawn from Py 7 x

o objective Il : 7]do(X = x) follows the standard normal, as chosen, for any x.
. . 1 . . _o L
argmin E[lY — F(X, M)l = 51X 7) = £ + Ellln =3l = 517 -2"1]

where 7 = h(Z,X,€), 7 = h(Z,X,&), 1 = h(Z,X,£"), and 7 = h(Z',X,&") with n ~ N(0,1a,),
g6, " e R N(0,14,), (Z,X) ~Pzx, X ~Px and Z,Z’ Rt Pz1x-

36



Theoretical guarantee

Under identifiability conditions! and well specified models, the frengression solution satisfies:
g*(e) ~ Pzx
(%, 1) ~ Py|do(x=x)
f*(x, h*(z,x,8) ) ~ IPY|Z:Z,X:X
forall xe X and z € Z.
umYIdo(X:x)

Sfem)
n~NO.1,)

P.
Pux Xy Prizx
g(e) h(z, ‘\.5)
€~ N(O0dy ) 57 ANED)

lConsistency, unconfoundeness and positivity (possibly relaxed)
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Sampling

© Simulate (Z,X) ~ Pzx.

Sample € ~ N(0, Iy, 1q,) and set (Z,X) = g*(e).
@ Simulate Y (x) ~ Py|do(x—x)-

For a treatment value x, draw 1 ~ N(O, Idy) and compute Y(x) = f* (X,n).
O Simulate (Z,X,Y) ~ Pzxy.

@ Generate (Z, X) as in step 1.

@ Draw ¢ ~ N0, /4,) and obtain 77 = h*(Z, X, €).

© Produce the response via Y = £*(X,7)

© Simulate (2,2, ?(X/)) from single world intervention graphs distributions (Richardson and Robins, '13)
® Generate (2,)?) and obtain 77 = h* (2,)?,5).
® Produce the response via f*(x’,7) with a specified x’.

f* can be replaced by a specified causal margin, while keeping remaining the same.
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LEADER trial

Large, randomized, double-blind, placebo-controlled cardio-
vascular outcomes trial Q

o

9340 patients with type 2 diabetes at high cardiovascular
risk. novo nordisk”
Randomized to liraglutide (up to 1.8 mg daily) vs. placebo,
both with standard care.

> e NEW ENGLAND
| JOURNAL of MEDICINE

Follow-up: range 3.55 years.

f X in2w
. . . . X i Liraglutide and Cardiovascular Outcomes in Type 2
Primary endpoint: Time to first major adverse cardiovascu-  piabetes

lar event (MACE).
Fewer MACE events in liraglutide group (Marso et al., '16). o

11322 | DOI: 10.1056/NE|Moal603827 | VOL. 375 NO. 4
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Trial data structure

Covariates
o Binary (4): Gender, smoker status, carotid stenosis > 50
o Continuous (7): Age, diabetes duration (months), HDL, LDL, total cholesterol, triglycerides, serum
creatinine
o Time-varying (3): HbAlc (every 6mo), BMI, eGFR (at select timepoints)

Longitudinal data structure
o Timeline split into 6-month intervals (max 60 months; T=11 discrete timepoints)

o Outcome (event indicator): Y; = 1(t > k) where k is the event time.

o No records to be tracked after the event occurs.

40



Frengression faithfully captures both covariate structures and event frequencies

o Correlation heatmap of baseline covariates, true (left) vs. simulated data (middle); RMSEs (right)

o Mean occurrence of MACE:
True data: 14.1% placebo arm; 12.6% liraglutide.
Frengression: (over 5000 simulations) 14.3% with 90% interval [13.5%, 15.2%] placebo arm; 12.9%

with 90% interval [12.1%, 13.8%] liraglutide arm.

o Logistic classifiers to distinguish real observations from simulated ones.
AUC 0.5 for baseline covariates, 0.55 for the joint distributions = nearly indistinguishable

a1



Distributional Causal Inference

Objectives:

o Estimation of the interventional distributions

o Simulation from estimated or specified causal models
Methods:

o Foundation: engression, a simple yet flexible generative method for distribution estimation

o DIV: engression + IV

o Frengression: engression + frugal parametrization
Favorable features:

o Nonparametric (NN)

o Computational scalable to high-dim

o Softwares with very light hyper-parameter tuning

Thank you!



