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Classical statistical learning: identically distributed

Predictors X € RP, response Y € R, (X,Y) ~ P
Prediction model Y = fy(x), e.g., linear model, neural network

o

o

Optimality of fy(x) for a fixed distribution:

o

m@in E(X,y)Np[g( Y, fy(X))]

where £ is a given loss function.

o

Method: empirical risk minimization (ordinary least-squares)
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Statistical learning in applications: distribution shifts

o Climate prediction under different climate change scenarios.

o Genomic/proteomic response modeling under genetic perturbations or
drug combinations.
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Statistical learning in applications: distribution shifts

o Distributional robustness: optimality for a class of distributions P

m@in sup Ep[l(Y, f(X))]
Pep

o Distributionally robust optimization (DRO): Ps = {P : D(P,Py) < ¢}
with D being the Wasserstein distance or f-divergence.
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Figure: Shifts in certain directions.

Ben-Tal et al. '98; Duchi and Namkoong '17; Sagawa et al. '20
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A causal perspective for distribution shifts

o Model (X, Y) using a causal framework — structural causal model

o Model distribution shifts as “interventions”

Meinshausen '18; Biihlmann '20; Christiansen et al. '21
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Exploiting heterogeneity in multi-environment data

o Data are collected from multiple environments/sources:
Z°:= (X%, Y )~ P¢ ecé&

o E.g., climate change scenarios, genetic perturbations, hospitals, etc.

o

Heterogeneity occurs at different levels:

o Mean shift: E[Z¢] = E[Z¢] for e # ¢

o Variance shift: Var(Z¢) = Var(Z¢') for e # €’; could be E[Z¢] = p

o Distribution shift: P€'s can differ in general ways, e.g., quantiles or higher-
order moments; could be E[Z¢] = u, Var(Z¢) =X

o Goal: a prediction model that is robust against future perturbations along
the “directions” of observed heterogeneity.
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Overview

Under a causal framework, we aim at robust prediction by exploiting data
heterogeneity at different levels.

o Mean shift: anchor regression (Rothenhiusler et al. '21)

o Variance shift: Causality-oriented robustness: exploiting general addi-
tive interventions. arXiv:2307.10299

o Distribution shift: Invariant Probabilistic Prediction. arXiv:2309.10083
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Causality-oriented robustness:
exploiting general additive interventions

with Peter Bihlmann and Armeen Taeb



Training setup: multi-environment data

Training data Z€ := (X¢, Y¢), e € £ are generated via a linear SCM:
XN\ (xe NG
ye) = B ye +e+6 @ 0

B*: adjacency matrix; ¢: exogenous variables (correlated components)

o

o 0¢: additive interventions that generate variance shifts Var(Z¢) = X¢

(e}

Structural equation for Y (where b* represents the causal effects):
Ye = b TX 4 ey +65.

Observational environment e = 0: 6% = 0, no intervention

o

o

Interventional environments e # 0: §¢ # 0
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Test setup: new additive intervention

Training data (X¢,Y¢), ec &:
()= (e A
Ye = ye € ‘
Test data (X", YY):

(iﬁt):& (¢t>+s+v @v&

. . . . 4
where random variable v is a new intervention. @ 0

Goal: robust against test distributions of (X", Y") for v in a certain (data
dependent) distribution class.
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Our method DRIG

DRIG (Distributional Robustness via Invariant Gradients)
The population DRIG estimator for v > 0 is defines as

by = argin { E[¢(X°, YO b)] + Ze; w® (E[(X®, Y©; b)] — E[(X, YO, b)]) }

observational MSE difference of interventional and observational MSE

where ((x,y; b) == (y — b"x)?, Y .cew® =1, and w® > 0.

When v — oo, optimal b satisfies the gradient invariance condition:

> W VLE[U(XC, Y& b)] = VLE[U(X®, YO, b)]
ecé

DRIG regularizes towards gradient invariance.
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Special cases of DRIG

The population DRIG estimator:

b, := argmin {EIOC, Y5 b)) 47 D7 w® (BLEX*, ¥ b)) = EIUXC, YO ) }

observational MSE ecf

difference of interventional and observational MSE

Special cases:

o v = 0: OLS with the observational data
o v =1: OLS with the pooled data

o v — oo: causal effects b* (when identifiable)

“Causality-oriented”: DRIG interpolates between OLS and causal effects. |
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Special cases of DRIG

Special cases when there are only mean shifts, i.e., §¢'s are deterministic:

Xe Xe
<Ye> =B* <Ye> +e+40°
o v > 0: anchor regression (Rothenhiusler et al. '21) with categorical anchor E

min E[((ld — Pe)(Y — b X))*] + 4E[(Pe(Y — b' X))*]

where Pg(-) = E[-|E] and Id(-) = -.

o vy — 00: two-stage least squares (IV regression)
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Robustness guarantee for general ~

XY= (%) +e+
yv ] = yv 9 v

The population DRIG estimator for v > 0 satisfies

Test distribution

Theorem

foy, = argmln sup E[(YY — b" X")?]

veCy

where C7 := {v e R E[wT] <73 weE[0¢5¢T]}.

DRIG prediction model is robust against perturbations in the class C”.
~: perturbation strength

o > e wE[6¢6¢]: perturbation directions
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More robustness by exploiting variance shifts

Larger rank(3" .z w®E[5¢6¢T]) — more “directions” we are robust against

o Anchor regression exploits deterministic §¢ (mean shifts):
#£robust directions < #observed environments

o DRIG exploits general 6¢ (variance shifts):
can be robust in all directions (with 2 environments)

DRIG can exploit heterogeneity in variance to protect
against perturbations in more directions.
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Single-cell data application

Single-cell RNA-sequencing data (Replogle et al. '22)

o 10 genes: a response and 9 predictors
o 10 training environments: 1 observational + 9 \f

interventional

o 50 test environments that can be very different
from training environments, due to interventions
on unobserved genes.

How robust is our prediction model on test environments?
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Results on single-cell data
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Results on single-cell data

Y =0 (observational OLS) —  DRIG
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Want to exploit shifts beyond the mean and variance — distribution!
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Invariant Probabilistic Prediction

with Alexander Henzi, Michael Law and Peter Buhlmann



Invariant Probabilistic Prediction (IPP)

o Training data: fore=1,..., m,

X = h®(ex)
Ye — g*(Xe,gy)

o Given a proper scoring rule S and a model Py(y|x), risk per environment:?
R5(0) = E[=S(Po(y|X€), Y¥)]
o Population IPP:

mm—ZRs )+ AD(RL(0),...,RT())

where D(v) = # ol (vi— vj)2, A > 0 tuning parameter.

'Engression: Extrapolation for Nonlinear Regression. S. and Meinshausen '23
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Identification for distributional causal effects

o Do-intervention: P*(y|x) denotes the distribution of Y under do(X = x)
X1 = x for any x
Yint — g*(X,EY)

When there is hidden confounding, we may have P*(y|x) # Pobs(y|x).

o In model
Y =B8TX +exp(y X)ey,

where ey ~ N(0, 1), we provide sufficient conditions for IPP (as~y — o0)
to identify P* with the logarithmic score and SCRPS (Bolin & Wallin '23).
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Results on single-cell data
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Krueger et al. '21
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Summary

Causality-oriented robust prediction by exploiting data heterogeneity at
different levels.
o Mean shift: anchor regression (Rothenhiusler et al. '21)

o Variance shift: Causality-oriented robustness: exploiting general additive in-
terventions. arXiv:2307.10299

o Distribution shift: Invariant Probabilistic Prediction. arXiv:2309.10083

Outlook:

o Robustness guarantee for finite perturbation strengths in distributional
or nonlinear settings

o Engression: Extrapolation for Nonlinear Regression. arXiv:2307.00835
o Causal effects identification by exploiting heterogeneity in distributions
o Distributional Instrumental Variable Regression (coming soon)
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Summary Thank you!

Causality-oriented robust prediction by exploiting data heterogeneity at
different levels.
o Mean shift: anchor regression (Rothenhiusler et al. '21)

o Variance shift: Causality-oriented robustness: exploiting general additive in-
terventions. arXiv:2307.10299

o Distribution shift: Invariant Probabilistic Prediction. arXiv:2309.10083

Outlook:

o Robustness guarantee for finite perturbation strengths in distributional
or nonlinear settings

o Engression: Extrapolation for Nonlinear Regression. arXiv:2307.00835
o Causal effects identification by exploiting heterogeneity in distributions
o Distributional Instrumental Variable Regression (coming soon)
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