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Classical statistical learning: identically distributed

◦ Predictors X ∈ Rp, response Y ∈ R, (X ,Y ) ∼ P

◦ Prediction model Ŷ = fθ(x), e.g., linear model, neural network

◦ Optimality of fθ(x) for a fixed distribution:

min
θ

E(X ,Y )∼P [ℓ(Y , fθ(X ))]

where ℓ is a given loss function.

◦ Method: empirical risk minimization (ordinary least-squares)
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Statistical learning in applications: distribution shifts

◦ Climate prediction under different climate change scenarios.

◦ Genomic/proteomic response modeling under genetic perturbations or
drug combinations.
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Statistical learning in applications: distribution shifts

◦ Distributional robustness: optimality for a class of distributions P

min
θ

sup
P∈P

EP [ℓ(Y , fθ(X ))]

◦ Distributionally robust optimization (DRO): Pδ = {P : D(P ,P0) ≤ δ}
with D being the Wasserstein distance or f -divergence.

Figure: Shifts in certain directions.

Ben-Tal et al. ’98; Duchi and Namkoong ’17; Sagawa et al. ’20
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A causal perspective for distribution shifts

◦ Model (X ,Y ) using a causal framework — structural causal model

◦ Model distribution shifts as “interventions”
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Meinshausen ’18; Bühlmann ’20; Christiansen et al. ’21
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Exploiting heterogeneity in multi-environment data

◦ Data are collected from multiple environments/sources:

Z e := (X e ,Y e) ∼ Pe , e ∈ E

◦ E.g., climate change scenarios, genetic perturbations, hospitals, etc.

◦ Heterogeneity occurs at different levels:

◦ Mean shift: E[Z e ] = E[Z e′ ] for e ∕= e′

◦ Variance shift: Var(Z e) = Var(Z e′) for e ∕= e′; could be E[Z e ] ≡ µ

◦ Distribution shift: Pe ’s can differ in general ways, e.g., quantiles or higher-
order moments; could be E[Z e ] ≡ µ, Var(Z e) ≡ Σ

◦ Goal: a prediction model that is robust against future perturbations along
the “directions” of observed heterogeneity.
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Overview

Under a causal framework, we aim at robust prediction by exploiting data
heterogeneity at different levels.

◦ Mean shift: anchor regression (Rothenhäusler et al. ’21)

◦ Variance shift: Causality-oriented robustness: exploiting general addi-
tive interventions. arXiv:2307.10299

◦ Distribution shift: Invariant Probabilistic Prediction. arXiv:2309.10083
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Causality-oriented robustness:
exploiting general additive interventions

with Peter Bühlmann and Armeen Taeb



Training setup: multi-environment data

Training data Z e := (X e ,Y e), e ∈ E are generated via a linear SCM:


X e

Y e


= B


X e

Y e


+ ε+ δe

H

X Y

E

◦ B: adjacency matrix; ε: exogenous variables (correlated components)

◦ δe : additive interventions that generate variance shifts Var(Z e) = Σe

◦ Structural equation for Y (where b represents the causal effects):

Y e = b⊤X e + εY + δeY .

◦ Observational environment e = 0: δ0 = 0, no intervention

◦ Interventional environments e ∕= 0: δe ∕= 0
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Test setup: new additive intervention

Training data (X e ,Y e), e ∈ E :

X e

Y e


= B


X e

Y e


+ ε+ δe

H

X Y

E

Test data (X v ,Y v ):

X v

Y v


= B


X v

Y v


+ ε+ v

where random variable v is a new intervention.

H

X Y

v

Goal: robust against test distributions of (X v ,Y v ) for v in a certain (data
dependent) distribution class.
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Our method DRIG

DRIG (Distributional Robustness via Invariant Gradients)

The population DRIG estimator for γ ≥ 0 is defines as

bγ := argmin
b


E[ℓ(X 0,Y 0; b)]  

observational MSE

+γ


e∈E
ωe E[ℓ(X e ,Y e ; b)]− E[ℓ(X 0,Y 0; b)]


  

difference of interventional and observational MSE



where ℓ(x , y ; b) := (y − b⊤x)2,


e∈E ω
e = 1, and ωe ≥ 0.

When γ → ∞, optimal b satisfies the gradient invariance condition:



e∈E
ωe∇bE[ℓ(X e ,Y e ; b)] = ∇bE[ℓ(X 0,Y 0; b)]

DRIG regularizes towards gradient invariance.
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Special cases of DRIG

The population DRIG estimator:

bγ := argmin
b


E[ℓ(X 0,Y 0; b)]  

observational MSE

+γ


e∈E
ωe E[ℓ(X e ,Y e ; b)]− E[ℓ(X 0,Y 0; b)]


  

difference of interventional and observational MSE



Special cases:

◦ γ = 0: OLS with the observational data

◦ γ = 1: OLS with the pooled data

◦ γ → ∞: causal effects b (when identifiable)

“Causality-oriented”: DRIG interpolates between OLS and causal effects.
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Special cases of DRIG

Special cases when there are only mean shifts, i.e., δe ’s are deterministic:


X e

Y e


= B


X e

Y e


+ ε+ δe

◦ γ ≥ 0: anchor regression (Rothenhäusler et al. ’21) with categorical anchor E

min
b

E[((Id − PE )(Y − b⊤X ))2] + γE[(PE (Y − b⊤X ))2]

where PE (·) = E[·|E ] and Id(·) = ·.
◦ γ → ∞: two-stage least squares (IV regression)

Xinwei Shen (ETH) Causality-oriented robustness March 5, 2024 11



Robustness guarantee for general γ

Test distribution 
X v

Y v


= B


X v

Y v


+ ε+ v

Theorem

The population DRIG estimator for γ ≥ 0 satisfies

bγ = argmin
b

sup
v∈Cγ

E[(Y v − b⊤X v )2]

where Cγ :=

v ∈ Rp+1 : E[vv⊤] ≼ γ


e∈E ω

eE[δeδe⊤]

.

DRIG prediction model is robust against perturbations in the class Cγ .

◦ γ: perturbation strength

◦


e∈E ω
eE[δeδe⊤]: perturbation directions
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More robustness by exploiting variance shifts

Larger rank(


e∈E ω
eE[δeδe⊤]) → more “directions” we are robust against

◦ Anchor regression exploits deterministic δe (mean shifts):

#robust directions ≤ #observed environments

◦ DRIG exploits general δe (variance shifts):

can be robust in all directions (with 2 environments)

DRIG can exploit heterogeneity in variance to protect
against perturbations in more directions.
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Single-cell data application

Single-cell RNA-sequencing data (Replogle et al. ’22)

◦ 10 genes: a response and 9 predictors

◦ 10 training environments: 1 observational + 9
interventional

◦ 50 test environments that can be very different
from training environments, due to interventions
on unobserved genes.

How robust is our prediction model on test environments?
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Results on single-cell data
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Results on single-cell data

Want to exploit shifts beyond the mean and variance → distribution!
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Invariant Probabilistic Prediction

with Alexander Henzi, Michael Law and Peter Bühlmann



Invariant Probabilistic Prediction (IPP)

◦ Training data: for e = 1, . . . ,m,

X e = he(εX )

Y e = g(X e , εY )

◦ Given a proper scoring rule S and a model Pθ(y |x), risk per environment:1

Re
S(θ) = E[−S(Pθ(y |X e),Y e)]

◦ Population IPP:

min
θ

1

m

m

e=1

Re
S(θ) + λD(R1

S(θ), . . . ,Rm
S (θ))

where D(v) = 1
m2

m
i ,j=1(vi − vj)

2, λ ≥ 0 tuning parameter.

1Engression: Extrapolation for Nonlinear Regression. S. and Meinshausen ’23
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Identification for distributional causal effects

◦ Do-intervention: P(y |x) denotes the distribution of Y under do(X = x)

X int = x for any x

Y int = g(x , εY )

When there is hidden confounding, we may have P(y |x) ∕= Pobs(y |x).
◦ In model

Y = β⊤X + exp(γ⊤X )εY ,

where εY ∼ N (0, 1), we provide sufficient conditions for IPP (as γ → ∞)
to identify P with the logarithmic score and SCRPS (Bolin & Wallin ’23).
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Results on single-cell data

Krueger et al. ’21
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Summary

Causality-oriented robust prediction by exploiting data heterogeneity at
different levels.

◦ Mean shift: anchor regression (Rothenhäusler et al. ’21)

◦ Variance shift: Causality-oriented robustness: exploiting general additive in-
terventions. arXiv:2307.10299

◦ Distribution shift: Invariant Probabilistic Prediction. arXiv:2309.10083

Outlook:

◦ Robustness guarantee for finite perturbation strengths in distributional
or nonlinear settings

◦ Engression: Extrapolation for Nonlinear Regression. arXiv:2307.00835

◦ Causal effects identification by exploiting heterogeneity in distributions

◦ Distributional Instrumental Variable Regression (coming soon)
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Summary Thank you!

Causality-oriented robust prediction by exploiting data heterogeneity at
different levels.

◦ Mean shift: anchor regression (Rothenhäusler et al. ’21)

◦ Variance shift: Causality-oriented robustness: exploiting general additive in-
terventions. arXiv:2307.10299

◦ Distribution shift: Invariant Probabilistic Prediction. arXiv:2309.10083

Outlook:

◦ Robustness guarantee for finite perturbation strengths in distributional
or nonlinear settings

◦ Engression: Extrapolation for Nonlinear Regression. arXiv:2307.00835

◦ Causal effects identification by exploiting heterogeneity in distributions

◦ Distributional Instrumental Variable Regression (coming soon)
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