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Representation learning and generation

Encoder Generator

male
young
smile
glasses

...

Data DataLatent
Representation learning Data generation

Observed data x ∼ qx on X ⊆ Rd

Latent variable z ∼ pz on Z ⊆ Rk

Bidirectional generative model: learning an encoder E : X → Z (to
learn representations) and a generator G : Z → X (to generate data).

Example: variational auto-encoder (VAE)
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Disentanglement

Disentanglement as a common goal:

In representation learning, an effective representation for downstream
learning tasks should disentangle the underlying factors of variation.

In generation, it is highly desirable if one can control the semantic
generative factors.

Both goals can be achieved with the disentanglement of latent variable
z , which informally means that each dimension of z measures a distinct
factor of variation in the data (Bengio et al., 2013).

How to achieve disentanglement?
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Supervision is required

Earlier unsupervised disentanglement methods mostly regularize the
VAE objective to encourage independence of learned representations.

Locatello et al. (2019) show that unsupervised learning of disentangled
representations is impossible: many existing unsupervised methods are
actually brittle, requiring careful supervised hyperparameter tuning.

To promote identifiability, recent work resorts to various forms of su-
pervision.

In this work, we also incorporate supervision on the ground-truth fac-
tors.
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Causally correlated underlying factors

Most existing methods are built on the assumption that the underlying
factors are mutually independent.

However, in many real world cases the semantically meaningful factors
of interests are causally correlated, i.e., connected by a causal graph.

We prove that methods with independent priors fail to disentangle
causally correlated factors.

Motivated by this finding, we propose a new method to learn Disen-
tangled gEnerative cAusal Representations called DEAR.
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Applications

Causal controllable generation: to generate data from many desired
interventional distributions of the latent factors.

To use such representations in downstream tasks.

Disentangled: better sample complexity (Bengio et al., 2013).
Causal: invariant and thus robust under distribution shifts (Schölkopf,
2019).

X. Shen (HKUST) Causal Disentanglement Learning March 9, 2021 7 / 34



Applications

Causal controllable generation: to generate data from many desired
interventional distributions of the latent factors.

To use such representations in downstream tasks.

Disentangled: better sample complexity (Bengio et al., 2013).
Causal: invariant and thus robust under distribution shifts (Schölkopf,
2019).

X. Shen (HKUST) Causal Disentanglement Learning March 9, 2021 7 / 34



Outline

1 Introduction

2 Problem Setting

3 Causal Disentanglement Learning

4 Experiments

5 Conclusion

X. Shen (HKUST) Causal Disentanglement Learning March 9, 2021 8 / 34



Generative model

Denote (x ,E (x)) ∼ qE (x , z), (G (z), z) ∼ pG (x , z).

Consider the objective for generative modeling:

Lgen(E ,G ) = DKL(qE (x , z), pG (x , z)), (1)

which is equivalent to the VAE objective up to a constant.
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Supervised regularizer

Let ξ ∈ Rm be the underlying factors of x , and yi be some continuous or
discrete observation of factor ξi satisfying ξi = E(yi |x) for i = 1, . . . ,m.

Let Ē (x) be the deterministic part of the stochastic transformation
E (x), i.e., Ē (x) = E(E (x)|x), which is used for representation learning.

We consider the following objective:

L(E ,G ) = Lgen(E ,G ) + λLsup(E ), (2)

where

Lsup =
∑m

i=1 E(x,y)[CE(Ēi (x), yi )] if yi is the binary or bounded contin-
uous label of ξi ;
Lsup =

∑m
i=1 E(x,y)[Ēi (x)− yi ]

2 if yi is the continuous observation of ξi .
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Definition of a disentangled representation

Intuitively, the above supervised regularizer aims at ensuring some
alignment between factor ξ and latent variable z .

Definition (Disentangled representation)

Given the underlying factor ξ ∈ Rm of data x , a deterministic encoder E is
said to learn a disentangled representation with respect to ξ if ∀i = 1, . . . ,m,
there exists a 1-1 function gi such that Ei (x) = gi (ξi ). Further, a stochastic
encoder E is said to be disentangled wrt ξ if its deterministic part Ē (x) is
disentangled wrt ξ.
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Unidentifiability with an independent prior

Assumption: the underlying factors of interests are causally correlated,
i.e., the elements of ξ are connected by a causal graph whose adjacency
matrix A0 is not a zero matrix.

The following proposition indicates that the disentangled representation
is generally unidentifiable with an independent prior.

Proposition

Let E∗ be any encoder that is disentangled with respect to ξ. Let b∗ = Lsup(E∗),
a = minG Lgen(E∗,G ), and b = min{(E ,G):Lgen=0} Lsup(E ). Suppose the prior pz is

factorized, i.e., pz(z) =
∏k

i=1 pi (zi ). Then we have a > 0, and either when b∗ ≥ b
or b∗ < b and λ < a

b−b∗ , there exists a solution (E ′,G ′) so that E ′ is entangled
and for any generator G , we have L(E ′,G ′) < L(E∗,G ).
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Causal disentanglement learning

Model

Formulation

Theoretical justification (population)

Optimization

Algorithm

Theoretical justification (sample)
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Generative model with a causal prior

x

ϵ

z x

Inference Generation

Data Data

Encoder Generator

Latent

SCM

ϵ1

ϵ2

ϵ3

ϵ4
z1

z2

z3

z4

Prior

We adopt the general nonlinear Structural Causal Model (SCM):

f (z) = A>f (z) + h(ε), (3)

z = f −1((I − A>)−1h(ε)) := Fβ(ε), (4)

where ε denotes the exogenous variables, A ∈ Rk×k is the weighted
adjacency matrix, f and h are element-wise nonlinear transformations.

(3) enables intervention; (4) enables generation.
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Formulation of DEAR

Rewrite the generative loss:

Lgen(φ, θ, β) = DKL(qφ(x , z), pθ,β(x , z)). (5)

Formulation to learn disentangled generative causal representations:

min
φ,θ,β

L(φ, θ, β) := Lgen(φ, θ, β) + λLsup(φ). (6)
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Identifiability of disentanglement

Theorem

Assume the infinite capacity of E , G and f . Further assume the true bi-
nary adjacency matrix can be learned. Then DEAR learns the disentangled
encoder E ∗. Specifically, we have gi (ξi ) = σ−1(ξi ) if CE loss is used in the
supervised regularizer, and gi (ξi ) = ξi if L2 loss is used.
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Optimization

The SCM prior pβ(z) and implicit generated conditional pθ(x |z) make
Lgen in (5) lose an analytic form.

The lemma gives the gradient.

We adopt a GAN method to adversarially estimate the gradient of Lgen
as in Shen et al. (2020).

Lemma (Gradient)

Let r(x , z) = q(x , z)/p(x , z) and D(x , z) = log r(x , z). Then we have

∇θLgen = −Ez∼pβ (z)
[s(x , z)∇xD(x , z)>|x=Gθ(z)

∇θGθ(z)],

∇φLgen = Ex∼qx [∇zD(x , z)>|z=Eφ(x)
∇φEφ(x)],

∇βLgen = −Eε[s(x , z)(∇xD(x , z)>∇βG(Fβ(ε)) +∇zD(x , z)>∇βFβ(ε))|
x=G(Fβ (ε))

z=Fβ (ε)
],

(7)

where s(x , z) = eD(x ,z) is the scaling factor.
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Algorithm

Algorithm 1: Disentangled gEnerative cAusal Representation (DEAR) Learning

Input: training set {x1, . . . , xN , y1, . . . , yNs}, initial parameter φ, θ, β, ψ, batch size n
1 while not convergence do
2 for multiple steps do
3 Sample {x1, . . . , xn} from the training set, {ε1, . . . , εn} from N (0, I )

Generate from the causal prior zi = Fβ(εi ), i = 1, . . . n
Update ψ by descending the stochastic gradient:
1
n

∑n
i=1∇ψ

[
log(1 + e−Dψ(xi ,Eφ(xi ))) + log(1 + eDψ(Gθ(zi ),zi ))

]
4 Sample {x1, . . . , xn, y1, . . . , yns}, {ε1, . . . , εn} as above; generate zi = Fβ(εi )

Compute θ-gradient: − 1
n

∑n
i=1 s(Gθ(zi ), zi )∇θDψ(Gθ(zi ), zi )

Compute φ-gradient: 1
n

∑n
i=1∇φDψ(xi ,Eφ(xi )) +

1
ns

∑ns
i=1∇φLsup(φ; xi , yi )

Compute β-gradient: − 1
n

∑n
i=1 s(G(zi ), zi )∇βDψ(Gθ(Fβ(εi )),Fβ(εi ))

Update parameters φ, θ, β using the gradients

Return: φ, θ, β
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Consistency of estimation

Theorem

Assume the objective function L(φ, θ, β) in (6) is smooth and strongly con-
vex, and achieves the global minimum at (φ∗, θ∗, β∗). Under further ap-
propriate conditions, there exists a sequence of (N,Ns ,Nd)→∞ such that

(φ̂, θ̂, β̂)
p→ (φ∗, θ∗, β∗).
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Datasets

Synthesized dataset Pendulum (Yang et al., 2020)

Each image is generated by four continuous factors as shown in (b).

We introduce 20% corrupted data whose shadow is randomly gener-
ated, mimicking some environmental disturbance.

pendulum_angle(1) light_angle(2)

shadow_length(3) shadow_position(4)

pendulum_
angle(0)

light_ 
angle(1)

shadow_ 
position(3)

shadow_ 
length(2)

(a) (b)
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Datasets

CelebA (Liu et al., 2015)

It contains 40 labelled binary attributes.

We consider two groups of causally correlated factors.

smile(1)

checkbone(3) narrow_eye(5)mouth_open(4)

gender(2)

smile6

chubby(6)

smile(0) gender(1)

narrow_
eye(4)chubby(5)

mouth_
open(3)

cheek-
bone(2)

Age6
young(1) gender(2)

receding_hairline(3)make_up(4)chubby(5)

eye_bag(6)

young(0) gender(1)

receding_ 
hairline(2)

make_
up(3)chubby(4)

eye_bag(2)

(a) CelebA-Smile (b) CelebA-Attractive

Figure: Underlying causal structures.

X. Shen (HKUST) Causal Disentanglement Learning March 9, 2021 23 / 34



Causal controllable generation

Traditional CG methods mainly manipulate the independent generative
factors.

With a learned SCM as the prior, we are able to generate images from
many desired interventional distributions of the latent factors.
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Causal controllable generation (Pendulum)

Intervene on 
pendulum_angle

Intervene on 
light_angle

shadow_length&
position affected

shadow_length&
position affected

(c) Test data (d) Intervention on cause factors

(a) Traversal of S- -VAEβ (b) Traversal of DEAR

Traverse a 
single 


latent with  
others fixed

Single factor 
affectedMultiple 

factors 
affected Disentangled
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Causal controllable generation (CelebA)

(c) Test data (d) Intervention on cause factors

(a) Traversal of S- -VAEβ (b) Traversal of DEAR

Traverse a 
single


 latent with  
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Multiple 
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affected
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affected
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affected
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Downstream task

We consider some downstream prediction tasks.

On CelebA, we consider the structure CelebA-Attractive. We artificially
create a target label τ = 1 if young=1, gender=0, receding hairline=0,
make up=1, chubby=0, eye bag=0, and τ = 0 otherwise, indicating
the attractiveness as a slim young woman with makeup and thick hair.

On the pendulum dataset, we regard the label of data corruption as
the target τ , i.e., τ = 1 if the data is corrupted and τ = 0 otherwise.

In both cases, the factors to disentangle are causally related to τ , which
are the features that humans use to do the task.

A disentangled representation of these causal factors tends to be more
data efficient and invariant to distribution shifts.
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Sample efficiency

Statistical efficiency score: the average test accuracy based on 100
samples divided by the average accuracy based on 10,000/all samples
(Locatello et al., 2019).

Table: Sample efficiency and test accuracy with different training sample sizes.

(a) CelebA

Method 100(%) 10,000(%) Eff(%)

ResNet 68.06±0.19 79.51±0.31 85.59±0.27

DEAR-lin-10% 78.09±0.59 79.54±0.41 98.18±0.49

DEAR-nlr-10% 80.30±0.24 80.87±0.12 99.29±0.23

ResNet-pretrain 76.84±2.08 83.75±0.93 91.74±1.98

S-VAE 77.07±1.42 79.87±1.67 96.49±1.68

S-β-VAE 71.78±1.99 76.63±0.24 93.67±2.41

S-TCVAE 77.10±2.08 81.63±0.20 94.45±2.72

DEAR-lin 83.51±0.77 84.92±0.11 98.34±0.81

DEAR-nlr 84.44±0.48 85.10±0.09 99.23±0.51

(b) Pendulum

100(%) all(%) Eff(%)

79.71±0.98 90.64±1.57 87.97±2.11

88.93±1.40 93.18±0.18 95.43±1.33

87.65±0.46 91.27±0.21 96.03±0.29

79.59±0.93 89.16±1.60 89.28±0.59

84.16±0.69 90.89±0.28 92.60±0.49

79.95±1.65 87.87±0.52 90.98±1.47

85.36±1.11 90.33±0.33 94.51±1.31

90.21±0.94 93.31±0.14 96.68±0.89

90.62±0.32 92.57±0.08 97.93±0.29
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Distributional robustness

We manipulate the training data such that the target label is more
strongly correlated with the spurious attributes.

On CelebA, we regard mouth open as the spurious factor; on Pendulum,
we choose background color ∈ {blue(+), white(−)}.
Normal IID-based methods like ERM tend to exploit these easily learned
spurious correlations in prediction.

In contrast, causal factors are regarded invariant and thus robust under
such shifts.
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Distributional robustness

Table: The worst-case and average test accuracy.

(a) CelebA

Method WorstAcc(%) AvgAcc(%)

ERM 59.12±1.78 82.12±0.26

DEAR-lin-10% 71.40±0.47 81.04±0.14

DEAR-nlr-10% 70.44±1.02 81.94±0.31

ERM-multilabel 59.17±4.02 82.05±0.25

S-VAE 60.54±3.48 79.51±0.58

S-β-VAE 63.85±2.09 80.82±0.19

S-TCVAE 64.93±3.30 81.58±0.14

DEAR-lin 76.05±0.70 83.56±0.09

DEAR-nlr 71.37±0.66 83.81±0.08

(b) Pendulum

WorstAcc(%) AvgAcc(%)

60.48±2.73 87.40±0.89

63.93±1.33 89.70±0.63

65.59±1.90 90.19±0.63

61.70±4.02 87.20±1.00

20.78±4.45 84.26±1.31

44.12±9.73 86.99±1.78

35.50±5.57 86.64±1.15

74.95±1.26 93.61±0.13

72.48±0.74 93.11±0.14
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Conclusion

We identified a problem with previous methods using the independent
prior assumption, and proved that they fail to disentangle when the
underlying factors are causally correlated.

We proposed a new disentangled learning method, DEAR, which inte-
grates an SCM prior into a bidirectional generative model, trained with
a suitable GAN loss.

We provided theoretical justifications on the identifiability of the for-
mulation and the asymptotic consistency of our algorithm.

Extensive experiments were conducted to demonstrate the effectiveness
of DEAR in causal controllable generation, and the benefits of the
learned representations for downstream tasks.
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