Disentangled Generative Causal Representation Learning

Xinwei Shen

The Hong Kong University of Science and Technology

xinwei.shen@connect.ust.hk

March 9, 2021

X. Shen (HKUST)

Causal Disentanglement Learning

March 9, 2021 1 / 34

Introduction

- 2 Problem Setting
- 3 Causal Disentanglement Learning

4 Experiments

5 Conclusion

X. Shen (HKUST)

Representation learning and generation

- Observed data $x \sim q_x$ on $\mathcal{X} \subseteq \mathbb{R}^d$
- Latent variable $z \sim p_z$ on $\mathcal{Z} \subseteq \mathbb{R}^k$
- Bidirectional generative model: learning an encoder E : X → Z (to learn representations) and a generator G : Z → X (to generate data).
- Example: variational auto-encoder (VAE)

Disentanglement as a common goal:

- In representation learning, an effective representation for downstream learning tasks should disentangle the underlying factors of variation.
- In generation, it is highly desirable if one can control the semantic generative factors.
- Both goals can be achieved with the *disentanglement* of latent variable *z*, which informally means that each dimension of *z* measures a distinct factor of variation in the data (Bengio et al., 2013).

Disentanglement as a common goal:

- In representation learning, an effective representation for downstream learning tasks should disentangle the underlying factors of variation.
- In generation, it is highly desirable if one can control the semantic generative factors.
- Both goals can be achieved with the *disentanglement* of latent variable *z*, which informally means that each dimension of *z* measures a distinct factor of variation in the data (Bengio et al., 2013).

How to achieve disentanglement?

• Earlier unsupervised disentanglement methods mostly regularize the VAE objective to encourage independence of learned representations.

- Earlier unsupervised disentanglement methods mostly regularize the VAE objective to encourage independence of learned representations.
- Locatello et al. (2019) show that unsupervised learning of disentangled representations is impossible: many existing unsupervised methods are actually brittle, requiring careful supervised hyperparameter tuning.

- Earlier unsupervised disentanglement methods mostly regularize the VAE objective to encourage independence of learned representations.
- Locatello et al. (2019) show that unsupervised learning of disentangled representations is impossible: many existing unsupervised methods are actually brittle, requiring careful supervised hyperparameter tuning.
- To promote identifiability, recent work resorts to various forms of supervision.
- In this work, we also incorporate supervision on the ground-truth factors.

- Most existing methods are built on the assumption that the underlying factors are mutually independent.
- However, in many real world cases the semantically meaningful factors of interests are causally correlated, *i.e.*, connected by a causal graph.

- Most existing methods are built on the assumption that the underlying factors are mutually independent.
- However, in many real world cases the semantically meaningful factors of interests are causally correlated, *i.e.*, connected by a causal graph.
- We prove that methods with independent priors fail to disentangle causally correlated factors.
- Motivated by this finding, we propose a new method to learn Disentangled gEnerative cAusal Representations called DEAR.

• Causal controllable generation: to generate data from many desired interventional distributions of the latent factors.

- Causal controllable generation: to generate data from many desired interventional distributions of the latent factors.
- To use such representations in downstream tasks.
 - Disentangled: better sample complexity (Bengio et al., 2013).
 - Causal: invariant and thus robust under distribution shifts (Schölkopf, 2019).

Introduction

- 2 Problem Setting
 - 3 Causal Disentanglement Learning

4 Experiments

X. Shen (HKUST)

- Denote $(x, E(x)) \sim q_E(x, z), (G(z), z) \sim p_G(x, z).$
- Consider the objective for generative modeling:

$$L_{\text{gen}}(E,G) = D_{\text{KL}}(q_E(x,z), p_G(x,z)), \qquad (1)$$

which is equivalent to the VAE objective up to a constant.

Supervised regularizer

- Let ξ ∈ ℝ^m be the underlying factors of x, and y_i be some continuous or discrete observation of factor ξ_i satisfying ξ_i = ℝ(y_i|x) for i = 1,..., m.
- Let $\overline{E}(x)$ be the deterministic part of the stochastic transformation E(x), i.e., $\overline{E}(x) = \mathbb{E}(E(x)|x)$, which is used for representation learning.

- Let ξ ∈ ℝ^m be the underlying factors of x, and y_i be some continuous or discrete observation of factor ξ_i satisfying ξ_i = ℝ(y_i|x) for i = 1,..., m.
- Let $\overline{E}(x)$ be the deterministic part of the stochastic transformation E(x), i.e., $\overline{E}(x) = \mathbb{E}(E(x)|x)$, which is used for representation learning.
- We consider the following objective:

$$L(E,G) = L_{gen}(E,G) + \lambda L_{sup}(E), \qquad (2)$$

where

- $L_{sup} = \sum_{i=1}^{m} \mathbb{E}_{(x,y)}[CE(\bar{E}_i(x), y_i)]$ if y_i is the binary or bounded continuous label of ξ_i ;
- $L_{\sup} = \sum_{i=1}^{m} \mathbb{E}_{(x,y)} [\bar{E}_i(x) y_i]^2$ if y_i is the continuous observation of ξ_i .

• Intuitively, the above supervised regularizer aims at ensuring some alignment between factor ξ and latent variable z.

Definition (Disentangled representation)

Given the underlying factor $\xi \in \mathbb{R}^m$ of data x, a deterministic encoder E is said to learn a disentangled representation with respect to ξ if $\forall i = 1, ..., m$, there exists a 1-1 function g_i such that $E_i(x) = g_i(\xi_i)$. Further, a stochastic encoder E is said to be disentangled wrt ξ if its deterministic part $\overline{E}(x)$ is disentangled wrt ξ .

Unidentifiability with an independent prior

- Assumption: the underlying factors of interests are causally correlated, i.e., the elements of ξ are connected by a causal graph whose adjacency matrix A₀ is not a zero matrix.
- The following proposition indicates that the disentangled representation is generally unidentifiable with an independent prior.

Proposition

Let E^* be any encoder that is disentangled with respect to ξ . Let $b^* = L_{\sup}(E^*)$, $a = \min_{G} L_{gen}(E^*, G)$, and $b = \min_{\{(E,G):L_{gen}=0\}} L_{\sup}(E)$. Suppose the prior p_z is factorized, i.e., $p_z(z) = \prod_{i=1}^k p_i(z_i)$. Then we have a > 0, and either when $b^* \ge b$ or $b^* < b$ and $\lambda < \frac{a}{b-b^*}$, there exists a solution (E', G') so that E' is entangled and for any generator G, we have $L(E', G') < L(E^*, G)$.

1 Introduction

2 Problem Setting

3 Causal Disentanglement Learning

4 Experiments

5 Conclusion

- Model
- Formulation
 - Theoretical justification (population)
- Optimization
- Algorithm
 - Theoretical justification (sample)

Generative model with a causal prior

• We adopt the general nonlinear Structural Causal Model (SCM):

$$f(z) = A^{\top} f(z) + h(\epsilon), \qquad (3)$$

$$z = f^{-1}((I - A^{\top})^{-1}h(\epsilon)) := F_{\beta}(\epsilon), \qquad (4)$$

where *ϵ* denotes the exogenous variables, *A* ∈ ℝ^{k×k} is the weighted adjacency matrix, *f* and *h* are element-wise nonlinear transformations.
(3) enables intervention; (4) enables generation.

• Rewrite the generative loss:

$$L_{gen}(\phi,\theta,\beta) = D_{\mathsf{KL}}(q_{\phi}(x,z), p_{\theta,\beta}(x,z)).$$
(5)

• Formulation to learn disentangled generative causal representations:

$$\min_{\phi,\theta,\beta} L(\phi,\theta,\beta) := L_{gen}(\phi,\theta,\beta) + \lambda L_{sup}(\phi).$$
(6)

Theorem

Assume the infinite capacity of E, G and f. Further assume the true binary adjacency matrix can be learned. Then DEAR learns the disentangled encoder E^{*}. Specifically, we have $g_i(\xi_i) = \sigma^{-1}(\xi_i)$ if CE loss is used in the supervised regularizer, and $g_i(\xi_i) = \xi_i$ if L_2 loss is used.

Optimization

- The SCM prior $p_{\beta}(z)$ and implicit generated conditional $p_{\theta}(x|z)$ make L_{gen} in (5) lose an analytic form.
- The lemma gives the gradient.
- We adopt a GAN method to adversarially estimate the gradient of L_{gen} as in Shen et al. (2020).

Lemma (Gradient)

Let
$$r(x, z) = q(x, z)/p(x, z)$$
 and $\mathcal{D}(x, z) = \log r(x, z)$. Then we have
 $\nabla_{\theta}L_{gen} = -\mathbb{E}_{z \sim p_{\beta}(z)}[s(x, z)\nabla_{x}\mathcal{D}(x, z)^{\top}|_{x=G_{\theta}(z)}\nabla_{\theta}G_{\theta}(z)],$
 $\nabla_{\phi}L_{gen} = \mathbb{E}_{x \sim q_{x}}[\nabla_{z}\mathcal{D}(x, z)^{\top}|_{z=E_{\phi}(x)}\nabla_{\phi}E_{\phi}(x)],$
 $\nabla_{\beta}L_{gen} = -\mathbb{E}_{\epsilon}[s(x, z)(\nabla_{x}\mathcal{D}(x, z)^{\top}\nabla_{\beta}G(F_{\beta}(\epsilon)) + \nabla_{z}\mathcal{D}(x, z)^{\top}\nabla_{\beta}F_{\beta}(\epsilon))]_{z=F_{\beta}(\epsilon)}^{x=G(F_{\beta}(\epsilon))}],$
where $s(x, z) = e^{\mathcal{D}(x, z)}$ is the scaling factor.
(7)

Algorithm 1: Disentangled gEnerative cAusal Representation (DEAR) Learning **Input:** training set $\{x_1, \ldots, x_N, y_1, \ldots, y_N\}$, initial parameter $\phi, \theta, \beta, \psi$, batch size n 1 while not convergence do for multiple steps do 2 Sample $\{x_1, \ldots, x_n\}$ from the training set, $\{\epsilon_1, \ldots, \epsilon_n\}$ from $\mathcal{N}(0, I)$ 3 Generate from the causal prior $z_i = F_{\beta}(\epsilon_i), i = 1, ..., n$ Update ψ by descending the stochastic gradient: $\frac{1}{n} \sum_{i=1}^{n} \nabla_{\psi} \left[\log(1 + e^{-D_{\psi}(x_i, E_{\phi}(x_i))}) + \log(1 + e^{D_{\psi}(G_{\theta}(z_i), z_i)}) \right]$ Sample $\{x_1, \ldots, x_n, y_1, \ldots, y_{n_s}\}$, $\{\epsilon_1, \ldots, \epsilon_n\}$ as above; generate $z_i = F_\beta(\epsilon_i)$ 4 Compute θ -gradient: $-\frac{1}{n}\sum_{i=1}^{n} s(G_{\theta}(z_i), z_i) \nabla_{\theta} D_{\psi}(G_{\theta}(z_i), z_i)$ Compute ϕ -gradient: $\frac{1}{n}\sum_{i=1}^{n} \nabla_{\phi} D_{\psi}(x_i, E_{\phi}(x_i)) + \frac{1}{n}\sum_{i=1}^{n} \nabla_{\phi} L_{sup}(\phi; x_i, y_i)$ Compute β -gradient: $-\frac{1}{n}\sum_{i=1}^{n} s(G(z_i), z_i) \nabla_{\beta} D_{\psi}(G_{\theta}(F_{\beta}(\epsilon_i)), F_{\beta}(\epsilon_i))$ Update parameters ϕ, θ, β using the gradients **Return:** ϕ, θ, β

くロト (得) (言) (言)

Theorem

Assume the objective function $L(\phi, \theta, \beta)$ in (6) is smooth and strongly convex, and achieves the global minimum at $(\phi^*, \theta^*, \beta^*)$. Under further appropriate conditions, there exists a sequence of $(N, N_s, N_d) \rightarrow \infty$ such that $(\hat{\phi}, \hat{\theta}, \hat{\beta}) \xrightarrow{P} (\phi^*, \theta^*, \beta^*)$.

1 Introduction

- 2 Problem Setting
- 3 Causal Disentanglement Learning

4 Experiments

5 Conclusion

Synthesized dataset Pendulum (Yang et al., 2020)

- Each image is generated by four continuous factors as shown in (b).
- We introduce 20% corrupted data whose shadow is randomly generated, mimicking some environmental disturbance.

CelebA (Liu et al., 2015)

- It contains 40 labelled binary attributes.
- We consider two groups of causally correlated factors.

(a) CelebA-Smile

(b) CelebA-Attractive

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Figure: Underlying causal structures.

3

- Traditional CG methods mainly manipulate the independent generative factors.
- With a learned SCM as the prior, we are able to generate images from many desired interventional distributions of the latent factors.

Causal controllable generation (Pendulum)

March 9, 2021 25 / 34

Image: A math a math

Causal controllable generation (CelebA)

Image: A match a ma

• We consider some downstream prediction tasks.

э

- We consider some downstream prediction tasks.
- On CelebA, we consider the structure CelebA-Attractive. We artificially create a target label τ = 1 if young=1, gender=0, receding_hairline=0, make_up=1, chubby=0, eye_bag=0, and τ = 0 otherwise, indicating the attractiveness as a slim young woman with makeup and thick hair.

- We consider some downstream prediction tasks.
- On CelebA, we consider the structure CelebA-Attractive. We artificially create a target label τ = 1 if young=1, gender=0, receding_hairline=0, make_up=1, chubby=0, eye_bag=0, and τ = 0 otherwise, indicating the attractiveness as a slim young woman with makeup and thick hair.
- On the pendulum dataset, we regard the label of data corruption as the target τ , *i.e.*, $\tau = 1$ if the data is corrupted and $\tau = 0$ otherwise.

- We consider some downstream prediction tasks.
- On CelebA, we consider the structure CelebA-Attractive. We artificially create a target label τ = 1 if young=1, gender=0, receding_hairline=0, make_up=1, chubby=0, eye_bag=0, and τ = 0 otherwise, indicating the attractiveness as a slim young woman with makeup and thick hair.
- On the pendulum dataset, we regard the label of data corruption as the target τ , *i.e.*, $\tau = 1$ if the data is corrupted and $\tau = 0$ otherwise.
- In both cases, the factors to disentangle are causally related to τ , which are the features that humans use to do the task.
- A disentangled representation of these causal factors tends to be more data efficient and invariant to distribution shifts.

 Statistical efficiency score: the average test accuracy based on 100 samples divided by the average accuracy based on 10,000/all samples (Locatello et al., 2019).

Method	100(%)	10,000(%)	Eff(%)	100(%)	all(%)	Eff(%)
ResNet	68.06±0.19	$79.51{\scriptstyle \pm 0.31}$	85.59±0.27	79.71±0.98	90.64±1.57	87.97±2.11
DEAR-lin-10%	78.09±0.59	$79.54{\scriptstyle\pm0.41}$	98.18 ± 0.49	88.93±1.40	$93.18{\scriptstyle \pm 0.18}$	95.43±1.33
DEAR-nlr-10%	$80.30{\scriptstyle \pm 0.24}$	$80.87{\scriptstyle\pm0.12}$	99.29 ±0.23	$87.65{\scriptstyle \pm 0.46}$	$91.27{\scriptstyle\pm0.21}$	96.03±0.29
ResNet-pretrain	76.84±2.08	83.75±0.93	91.74±1.98	79.59±0.93	89.16 ± 1.60	89.28±0.59
S-VAE	77.07 ± 1.42	79.87 ± 1.67	$96.49{\scriptstyle \pm 1.68}$	$84.16{\scriptstyle \pm 0.69}$	$90.89{\scriptstyle \pm 0.28}$	92.60±0.49
$S-\beta-VAE$	71.78 ± 1.99	$76.63{\scriptstyle \pm 0.24}$	$93.67{\scriptstyle\pm2.41}$	$79.95{\scriptstyle \pm 1.65}$	$87.87{\scriptstyle\pm0.52}$	90.98±1.47
S-TCVAE	77.10 ± 2.08	$81.63{\scriptstyle \pm 0.20}$	$94.45{\scriptstyle\pm2.72}$	$85.36{\scriptstyle\pm1.11}$	90.33±0.33	94.51 ± 1.31
DEAR-lin	83.51±0.77	$84.92{\scriptstyle\pm0.11}$	$98.34{\scriptstyle\pm0.81}$	$90.21{\pm}0.94$	93.31 ±0.14	96.68±0.89
DEAR-nlr	$\pmb{84.44}{\scriptstyle\pm0.48}$	$\textbf{85.10}{\scriptstyle \pm 0.09}$	$99.23{\scriptstyle \pm 0.51}$	$\textbf{90.62}{\scriptstyle \pm 0.32}$	$92.57{\scriptstyle\pm0.08}$	97.93 ±0.29

Table: Sample efficiency and test accuracy with different training sample sizes.

(a) CelebA

(b) Pendulum

• We manipulate the training data such that the target label is more strongly correlated with the spurious attributes.

- We manipulate the training data such that the target label is more strongly correlated with the spurious attributes.
- On CelebA, we regard *mouth_open* as the spurious factor; on Pendulum, we choose *background_color* ∈ {blue(+), white(-)}.

- We manipulate the training data such that the target label is more strongly correlated with the spurious attributes.
- On CelebA, we regard *mouth_open* as the spurious factor; on Pendulum, we choose *background_color* ∈ {blue(+), white(-)}.
- Normal IID-based methods like ERM tend to exploit these easily learned spurious correlations in prediction.
- In contrast, causal factors are regarded invariant and thus robust under such shifts.

Table: The worst-case and average test accuracy.

	(a) CelebA	(b) Pendulum		
Method	WorstAcc(%)	AvgAcc(%)	WorstAcc(%)	AvgAcc(%)
ERM	59.12±1.78	82.12±0.26	60.48±2.73	87.40±0.89
DEAR-lin-10%	$71.40{\scriptstyle \pm 0.47}$	$81.04{\scriptstyle \pm 0.14}$	63.93±1.33	89.70±0.63
DEAR-nlr-10%	$70.44{\scriptstyle \pm 1.02}$	$81.94{\scriptstyle \pm 0.31}$	$65.59{\scriptstyle \pm 1.90}$	$90.19{\scriptstyle \pm 0.63}$
ERM-multilabel	59.17±4.02	82.05±0.25	61.70±4.02	87.20±1.00
S-VAE	60.54±3.48	$79.51{\scriptstyle \pm 0.58}$	20.78±4.45	$84.26{\scriptstyle \pm 1.31}$
S- β -VAE	63.85±2.09	$80.82{\scriptstyle \pm 0.19}$	44.12±9.73	$86.99{\scriptstyle \pm 1.78}$
S-TCVAE	64.93±3.30	$81.58{\scriptstyle \pm 0.14}$	35.50±5.57	$86.64{\scriptstyle \pm 1.15}$
DEAR-lin	76.05±0.70	$83.56{\scriptstyle \pm 0.09}$	74.95±1.26	93.61 ± 0.13
DEAR-nlr	$71.37{\scriptstyle\pm0.66}$	83.81±0.08	$72.48{\scriptstyle \pm 0.74}$	$93.11{\scriptstyle \pm 0.14}$

1 Introduction

- 2 Problem Setting
- 3 Causal Disentanglement Learning

4 Experiments

- We identified a problem with previous methods using the independent prior assumption, and proved that they fail to disentangle when the underlying factors are causally correlated.
- We proposed a new disentangled learning method, DEAR, which integrates an SCM prior into a bidirectional generative model, trained with a suitable GAN loss.
- We provided theoretical justifications on the identifiability of the formulation and the asymptotic consistency of our algorithm.
- Extensive experiments were conducted to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks.

- Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8), 1798–1828.
- Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of the ieee international conference on computer vision (pp. 3730–3738).
- Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., & Bachem, O. (2019, June). Challenging common assumptions in the unsupervised learning of disentangled representations. In *Proceedings of the 36th international conference on machine learning (icml)* (Vol. 97, pp. 4114–4124). PMLR. Retrieved from http://proceedings.mlr.press/v97/locatello19a.html

Schölkopf, B. (2019). Causality for machine learning. arXiv preprint arXiv:1911.10500.

- Shen, X., Zhang, T., & Chen, K. (2020). Bidirectional generative modeling using adversarial gradient estimation. arXiv preprint arXiv:2002.09161.
- Yang, M., Liu, F., Chen, Z., Shen, X., Hao, J., & Wang, J. (2020). Causalvae: Structured causal disentanglement in variational autoencoder. arXiv preprint arXiv:2004.08697.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thanks

э.

▲ □ ▶ < □ ▶ < □</p>

2