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Classical setting

◦ Predictors X ∈ Rp, response Y ∈ Rd , training data (X ,Y ) ∼ PXY

◦ Target: functionals of conditional distribution Ptest
Y |X=x , e.g., conditional mean/quantiles

◦ Classical setting: Ptest
X = PX and Ptest

Y |X=x = PY |X=x

◦ Method: fit the target on training data by empirical risk minimization (ERM)

1



Potential problems

Cases where a naive ERM fit on training data may not be optimal:

◦ Out-of-support covariate shifts (aka, extrapolation): beyond the training support of PX

◦ Conditional shifts: shifts in PY |X

◦ Causal effects: interventional distribution of the outcome Y given treatment X in the
presence of latent confounders

H

X Y

Need to generalize beyond the observed data distribution PXY .
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A distributional perspective for generalization

◦ Observed data from PXY

◦ Inferential target not a functional of PXY . E.g., conditional mean function under distribution shifts,
treatment effects...

Estimating the full observed data distribution (which allows to
exploit more information from data) for better generalization beyond it.

Showcases:

◦ Out-of-support covariate shifts1

◦ Conditional shifts2

◦ Causal effect estimation3

1S. and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024
2Henze, S., Law, and Bühlmann, “Invariant Probabilistic Prediction,” Biometrika, 2024
3Holovchak, Saengkyongam, Meinshausen, S., “Distributional Instrumental Variable Method,” arXiv:2502.07641
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Goal of this talk

Develop distributional approaches that can generalize better beyond the observations.

How to estimate a distribution?
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Distribution estimation in classical statistics

Random variables X and Y (X can be empty set)

Target: PY |X=x

Methods: kernel density estimation, quantile regression, distributional regression (Koenker ’05;

Meinshausen ’06; Dunson et al. ’07; Hothorn et al. ’14), etc.
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Distribution estimation in classical statistics

◦ Restrictive parametric assumptions

◦ High computational cost with large sample sizes

◦ Not scalable to high dimensional responses

◦ Sampling is nontrivial! MCMC
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Generative AI

Same goal: to learn a distribution by generating new samples from it.

Methods: diffusion models, generative adversarial networks, etc.

Images generated by DALL-E 3 (openai.com)

Excellent for images, texts, video.

What about scientific data, clinical data, etc?
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Generative AI

◦ Computationally intensive — GPU time is all you need

◦ Hyperparameter tuning

◦ Emphasis on data generation rather than inference

◦ Not easy as a plug-in for our statistical procedures
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Distribution learning

Classical statistics Machine learning

Density estimation ? Generative models

as simple as classical stat methods
as powerful as machine learning methods
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Distributional learning via generative models

◦ Target: conditional distribution of Y |X
◦ Build a generative model to describe the distribution of Y |X :

Y = g(X , ε)

where ε ∼ Pε pre-defined and map g : (x , ε) 󰀁→ y is often parametrized by neural networks.

◦ Goal: find g such that g(x , ε) ∼ PY |X=x for any x

◦ Sampling-based inference: a model to sample from PY |X=x
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Proper scoring rule

◦ Given a distribution P and an observation z , the energy score1 is defined as

ES(P , z) =
1

2
E(Z ,Z ′)∼P⊗P󰀂Z − Z ′󰀂2 − EP󰀂Z − z󰀂2.

◦ Strictly proper scoring rule: for any P , we have EZ∼P󰂏 [ES(P ,Z )] ≤ EZ∼P󰂏 [ES(P󰂏,Z )],
where “=” ⇔ P = P󰂏.

1Gneiting and Raftery, 2007
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Our distributional learning method engression

◦ Population solution:

g̃ ∈ argmin
g∈G

E(X ,Y )∼P [−ES(Pg (.|X ),Y )]

= argmin
g∈G

E
󰁫
󰀂Y − g(X , ε)󰀂2 −

1

2
󰀂g(X , ε)− g(X , ε′)󰀂2

󰁬

where Pg (.|x) is the distribution of g(x , ε) and ε, ε′ are independent draws from N (0, I ).

◦ Proposition: under correct model specification, we have g̃(x , ε) ∼ PY |X=x , ∀x ∈ supp(PX ).

◦ Algorithm: neural network G, empirical risk, (stochastic) gradient descent.
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Estimation of the functionals

Monte Carlo: for a fixed test point x ,

Draw a sample of ε, i.e., ε1, . . . , εm;

Then g̃(x , εi ), i = 1, . . . ,m is a sample of the estimated distribution of Y |X = x ;

Obtain estimators:

◦ conditional mean estimation: Êε[g̃(x , ε)]

◦ conditional α-quantile estimation: Q̂α(g̃(x , ε))
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Our R and Python packages1

R: install.packages("engression")

> library(engression) ## load engression package

> engressor = engression(X, Y) ## fit an engression model

> predict(engressor, Xtest, type="mean") ## mean prediction

> predict(engressor, Xtest, type="quantile", quantiles=c(0.1, 0.5, 0.9)) ## quantile prediction

> predict(engressor, Xtest, type="sample", nsample=100) ## sampling

Python: pip install engression

> from engression import engression ## load engression package

> engressor = engression(X, Y) ## fit an engression model

> engressor.predict(Xtest, target="mean") ## mean prediction

> engressor.predict(Xtest, target=[0.025, 0.5, 0.975]) ## quantile prediction

> engressor.sample(Xtest, sample_size=100) ## sampling

1
http://github.com/xwshen51/engression
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Engression for climate downscaling1

Sea-level 
pressure

Low-resolution High-resolutionEngression model
Global climate model Regional climate model

g(X, ε) |X = x ∼ PY|XX ∈ ℝ1440 Y ∈ ℝ16384

g(X, ε1) g(X, ε2) g(X, ε3) g(X, ε4) g(X, ε5)

Sa
m
pl
es

1Joint with M. Schillinger, M. Samarin, R. Knutti, and N. Meinshausen. arXiv:2509.26258
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Classical statistics Machine learning

Density estimation Engression Generative models

simple yet powerful tool
for distribution learning

Powerful compared to classical stat methods:

◦ capacity of neural networks alleviates limitations
of parametric model specifications

◦ scalable to (very) high-dimensional X and Y

◦ no quantile crossing

Simple compared to modern generative models:

◦ computationally lighter:
one-step sampling, no discriminator/minmax

◦ fewer tuning parameters

◦ focus on downstream estimation and inference
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Problem I Out-of-support covariate shifts (extrapolation)1

1S. and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024



Challenge of nonlinear extrapolation

Air-quality data with measurements of two pollutants

Linear regression Random Forests Neural network regression1

1Predictions from different random initializations and NN architectures with 3, 5, 7, or 9 layers
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Engression makes a difference

The reliability of engression does not break down immediately at the support boundary.

Results of engression with 3, 5, 7, or 9 layers and random initializations.
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Additive noise models (ANMs)

Post-ANM: Y = g(X )+η

x1

(x1, y1)g(x1) + η1
η1

(x2, y2)

x2

g(x2) + η2
η2−

Pre-ANM: Y = g(X+η)

x1

(x1, y1)g(x1 + η1)
η1

(x2, y2)

x2

g(x2 + η2) η2

x1 η1x2 η2+ +

−

All models are wrong, but can one of them be useful in terms of extrapolation?
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Additive noise models (ANMs)

Post-ANM: Y = g(X )+η

x1

(x1, y1)g(x1) + η1
η1

(x2, y2)

x2

g(x2) + η2
η2−

Pre-ANM: Y = g(X+η)

x1

(x1, y1)g(x1 + η1)
η1

(x2, y2)

x2

g(x2 + η2) η2

x1 η1x2 η2+ +

−

Pre-additive noises reveal some information about the true function outside the support.
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Distributional learning

Pre-ANM: Y = g(X + η)

x1

(x1, y1)g(x1 + η1)
η1

(x2, y2)

x2

g(x2 + η2) η2

x1 η1x2 η2+ +

−

To capture the information from the pre-additive noise, one
needs to fit the full conditional distribution of Y given X .
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Engression has the two ingredients for extrapolation

󰃀 Engression is a distributional learning method.

󰃀 Engression model class {g(x , ε)} contains pre-ANMs {g(W⊤x+h(ε)) : g ∈ G, h ∈ H},
where h(ε) represents the pre-additive noise; g , h, and W are to be learned.
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Regression fails to extrapolate

Theory setup:

◦ True model Y = g󰂏(X + η); pre-ANM class {g(x + h(ε)) : g ∈ G, h ∈ H}; G strictly monotone;

◦ (For simplicity) symmetric noise η ∈ [−ηmax, ηmax]; training support (−∞, xmax].

Proposition (S. and Meinshausen, ’24)

Let FL1 := argming∈G EPtr |Y − g(X )|. For any x > xmax, we have

sup
g∈FL1

|g(x)− g󰂏(x)| = ∞.
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Engression can extrapolate up to a certain point

Theory setup:

◦ True model Y = g󰂏(X + η); pre-ANM class {g(x + h(ε)) : g ∈ G, h ∈ H}; G strictly monotone;

◦ (For simplicity) symmetric noise η ∈ [−ηmax, ηmax]; training support (−∞, xmax].

Theorem (S. and Meinshausen, ’24)

We have g̃(x) = g󰂏(x) for all x ≤ xmax + ηmax, and h̃(ε)
d
= η.

◦ Population engression (g̃ , h̃) recovers the true model beyond the training support.

◦ Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.
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Numerical example

training data test data
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NN quantile regression. Top to bottom: 10, 100 and 1000 hidden dimension. Left to right: 2, 3, 5, 10 and 20 layers.
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Engression. Top to bottom: 10, 100 and 1000 hidden dimension. Left to right: 2, 3, 5, 10 and 20 layers.
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Large-scale real-data experiments

L2−LOSS ENGRESSION (log−scale)
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Figure: Out-of-support losses (in log-scale) of engression and regression for various data configurations,
averaging over all hyperparameter settings.
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Takeaway I

Engression + pre-ANM ⇒ better extrapolation than standard regression

NN regression engression
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Problem II General shifts1

1Henzi, S., Law, and Bühlmann, “Invariant Probabilistic Prediction,” Biometrika, 2024



Invariant Probabilistic Prediction (IPP)

◦ Heterogeneous (multi-environment) data: for e = 1, . . . ,m,

X e = he(εX )

Y e = g󰂏(X e , εY )

◦ Given a proper scoring rule S and a model Pθ(y |x), “engression risk” per environment

Re
S(θ) = E[−S(Pθ(y |X e),Y e)].

◦ Population IPP (invariant engression):

min
θ

1

m

m󰁛

e=1

Re
S(θ) + λD(R1

S(θ), . . . ,Rm
S (θ))

where D(v) = 1
m2

󰁓m
i ,j=1(vi − vj)

2, λ ≥ 0 tuning parameter. λ = 0: naive engression.
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Single-cell data application

Single-cell RNA-sequencing data (Replogle et al. ’22)

◦ 10 genes: a response and 9 predictors

◦ 10 training environments: 1 observational + 9 interventional

◦ 50 test environments that can be very different from training
environments, due to interventions on unobserved genes

How robust our prediction model is on test environments?
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Results on single-cell data

IPP Competitors

[1] Rothenhäusler et al. ’21; [2] Kook et al. ’22; [3] S., Bühlmann, and Taeb, ’23; [4] Krueger et al. ’21
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Takeaway II

Invariant distributional learning identifies a more robust prediction model
than methods that only target robust mean prediction.
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Problem III Causal effect estimation1

1Holovchak, Saengkyongam, Meinshausen, S., “Distributional Instrumental Variable Method,” arXiv:2502.07641



Instrumental variable model

Treatment X , outcome Y , instrumental variable Z .

X ← g(Z , ηX )

Y ← f (X , ηY )

H

X Y

Z

where f , g can be nonlinear, and ηX and ηY are correlated due to latent confounder H.

What would happen if everyone were given treatments X = x? i.e.

Estimand: do-interventional distribution P(Y |do(X = x)) or P(Y (x))
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Identifiability

Theorem (HSMS ’25)

Assume for all z ∈ supp(Z ), g(z , ·) is strictly monotone, and for all x ∈ supp(X ), supp(ηX |X =
x) = supp(ηX ). Then, for all x ∈ supp(X ), the interventional distribution P(Y |do(X := x)) is
uniquely determined from the observed data distribution Pobs(x , y |z).

Estimate Pobs(x , y |z)
sufficient⇒ identify P(Y |do(X := x))

necessary?
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“Under-identified” case

◦ One binary IV Z ∈ {0, 1}, two continuous treatments X1,X2

X1 = g1(Z , η1)

X2 = g2(Z , η2)

Y = β1X1 + β2X2 + ηY
Y

X1

Z

X2

H

◦ Two-stage least-squares (2SLS) would fail as E[X1|Z ] and E[X2|Z ] are collinear.

◦ Distributional identifiability holds:

Theorem. Assume (Xi |Z = 0) ∕ d= (c + Xi |Z = 1), for any constant c , for
i = 1, 2. Then β1 and β2 are uniquely determined from Pobs(x1, x2, y |z).
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Distributional instrumental variable (DIV) method

Joint generative model:

ηX = hX (εX , εH)

ηY = hY (εY , εH)

󰀬
confounded noises

X = g(Z , ηX )

Y = f (X , ηY )

X Y

Z

ηX ηY

εX εYεH

where εX , εY , εH are independent standard Gaussians.
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Distributional instrumental variable (DIV) method

DIV solution (engression applied to (X ,Y )|Z ):

argmin
f ,g ,hX ,hY

E
󰀗
󰀂(X ,Y )− (X̂ , Ŷ )󰀂2 −

1

2
󰀂(X̂ , Ŷ )− (X̂ ′, Ŷ ′)󰀂2

󰀘
,

where

X̂ := g(Z , hX (εX , εH)) Ŷ := f (X̂ , hY (εY , εH))

X̂ ′ := g(Z , hX (ε
′
X , ε

′
H)) Ŷ ′ := f (X̂ ′, hY (ε

′
Y , ε

′
H))
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Estimation of the interventional distribution and its functionals

DIV solution f ∗, h∗Y enables sampling from the interventional distribution:

f ∗(x , h∗Y (εY , εH)) ∼ P(Y |do(X = x)), ∀x .

◦ Estimation of the interventional mean function

µ∗(x) := E[f ∗(x , h∗Y (εY , εH))].

Average treatment effect: µ∗(x1)− µ∗(x0)

◦ Estimation of the interventional quantile function

q∗α(x) := Qα[f
∗(x , h∗Y (εY , εH))].

Quantile treatment effect: q∗α(x1)− q∗α(x0)
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Simulation: interventional mean estimation in an ‘under-identified’ case

Setting: Z ∼ Unif(−3, 3), H, εX , εY ∼ Unif(−1, 1) mutually independent, α ∈ R is a tuning parameter;

X = Z (α+ 2H + εX ), Y = (1 + exp(−(X + 2H + εY )/3))
−1.

It holds E(X |Z ) = αZ and Var(X |Z ) = 5
3Z

2, where α controls the dependence of the
conditional mean of X |Z .

α = 0 α = 1 α = 5
DIV 0.002 0.002 0.002
HSIC-X 2.693 0.333 0.344
CF linear 141.941 0.476 1.625
CF nonlinear 2.762 0.243 0.057
DeepGMM 1.158 0.274 0.005
DeepIV 0.675 0.305 0.102

Table: MSE of the estimated interventional mean functions.

Baselines: CF (Heckman, 76, Newey et al., 99, Guo & Small, 16); DeepIV (Hartford et al., 17); DeepGMM (Bennett

et al., 20); HSIC-X (Saengkyongam et al., 22)
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Takeaway III

Distributional causal learning can identify the causal effects in more cases than 2SLS.
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Summary

Statistical Estimating the full distribution for better generalization beyond observed distributions

◦ Engression + pre-ANM ⇒ out-of-support covariate shifts (better extrapolation than regression)1

◦ Multi-environment, invariant engression ⇒ general shifts (more robust than methods that only
target the mean)2

◦ Engression + instrumental variable ⇒ causal effect estimation (more identification than 2SLS)3

Algorithmic How? Engression—simple yet powerful generative AI tool

Beyond generalization Have a problem involving distribution estimation? Try engression! Thank you!

1
S. and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024

2
Henze, S., Law, and Bühlmann, “Invariant Probabilistic Prediction,” Biometrika, 2024

3
Holovchak, Saengkyongam, Meinshausen, and S., “Distributional Instrumental Variable Method,” arXiv:2502.07641
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