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Classical setting

Predictors X € RP, response Y € RY, training data (X, Y) ~ Pxy
Target: functionals of conditional distribution P§?|s)t<:x, e.g., conditional mean/quantiles
Classical setting: P¥*t = Px and P'{,ef)t(zx = Py|x=x

Method: fit the target on training data by empirical risk minimization (ERM)



Potential problems

Cases where a naive ERM fit on training data may not be optimal:
o Out-of-support covariate shifts (aka, extrapolation): beyond the training support of Px
o Conditional shifts: shifts in Py|x

o Causal effects: interventional distribution of the outcome Y given treatment X in the
presence of latent confounders

Need to generalize beyond the observed data distribution Pxy .
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A distributional perspective for generalization

o Observed data from Pxy

o Inferential target not a functional of Pxy. E.g., conditional mean function under distribution shifts,
treatment effects...

Estimating the full observed data distribution (which allows to
exploit more information from data) for better generalization beyond it.

Showcases:
o Out-of-support covariate shifts!
o Conditional shifts?

o Causal effect estimation?

s, and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024
2Henze, S., Law, and Bihlmann, “Invariant Probabilistic Prediction,” Biometrika, 2024
3Ho|ovchak, Saengkyongam, Meinshausen, S., “Distributional Instrumental Variable Method,” arXiv:2502.07641



Goal of this talk

Develop distributional approaches that can generalize better beyond the observations.J

How to estimate a distribution?



Distribution estimation in classical statistics

Random variables X and Y (X can be empty set)

Target: Py x—x

Methods: kernel density estimation, quantile regression, distributional regression (Koenker '05;
Meinshausen '06; Dunson et al. '07; Hothorn et al. '14), etc.
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Distribution estimation in classical statistics

)

Restrictive parametric assumptions
High computational cost with large sample sizes
Not scalable to high dimensional responses

Sampling is nontriviall MCMC



Generative Al

Same goal: to learn a distribution by generating new samples from it.

Methods: diffusion models, generative adversarial networks, etc.

Images generated by DALL-E 3 (openai.com)

ExceIIent for images, texts, V|deo

What about scientific data, clinical data, etc?
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Generative Al
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Computationally intensive — GPU time is all you need
Hyperparameter tuning
Emphasis on data generation rather than inference

Not easy as a plug-in for our statistical procedures



Distribution learning

Classical statistics @ Machine learning

Density estimation ? Generative models

as simple as classical stat methods
as powerful as machine learning methods
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Distributional learning via generative models

Target: conditional distribution of Y|X

Build a generative model to describe the distribution of Y|X:
Y =g(X,e¢)

where € ~ P; pre-defined and map g : (x, &) — y is often parametrized by neural networks.
Goal: find g such that g(x,¢&) ~ Py|x— for any x

Sampling-based inference: a model to sample from Py/|x_,



Proper scoring rule

o Given a distribution P and an observation z, the energy score! is defined as

1
ES(P,Z) = EE(Z,Z’)NP@)PHZ — Z/||2 — EPHZ — 2”2.

o Strictly proper scoring rule: for any P, we have Ez_p«[ES(P, Z)] < Ez.p+[ES(P*, Z)],

where "=" & P = P*,

1Gneiting and Raftery, 2007
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Our distributional learning method engression

o Population solution:

g S argmin E(X7y)NP[—ES(Pg(.‘X), Y)]
geg
. 1
= argminE|[|Y — g(X,¢)ll2 — 5 lg(X, ) — g(X,€)[2
geg 2

where Pg(.|x) is the distribution of g(x,¢) and ¢,¢” are independent draws from A/(0, /).
o Proposition: under correct model specification, we have g(x, €) ~ Py|x—, Vx € supp(Px).

o Algorithm: neural network G, empirical risk, (stochastic) gradient descent.



Estimation of the functionals

Monte Carlo: for a fixed test point x,
© Draw asample of ¢, i.e., €1,...,6m;
@ Then g(x,¢;), i =1,...,mis a sample of the estimated distribution of Y|X = x;

© Obtain estimators:
o conditional mean estimation: K.[z(x, )]
o conditional a-quantile estimation: Q. (&(x, <))
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Our R and Python packages!

R: install.packages("engression")

library(engression)

engressor = engression(X, Y)

predict(engressor, Xtest, type="mean")

predict (engressor, Xtest, type="quantile", quantiles=c(0.1, 0.5, 0.9))
predict(engressor, Xtest, type="sample", nsample=100)

Python: pip install engression

>
>
>
>
>

from engression import engression

engressor = engression(X, Y)
engressor.predict(Xtest, target="mean")
engressor.predict (Xtest, target=[0.025, 0.5, 0.975])
engressor.sample (Xtest, sample_size=100)

1http://github.com/sthenSl/engression

##
##
##
##
##

##
##
##
##
##

load engression package
fit an engression model
mean prediction
quantile prediction
sampling

load engression package
fit an engression model
mean prediction
quantile prediction
sampling
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http://github.com/xwshen51/engression

Engression for climate downscaling?

Low-resolution Engression model H|gh -resolution

Global climate model

Sea-level
pressure

X e R0 8X,e)| X =x~ Py

’ L f v v
gX. &) gX, &) gX, &) 8(X, &) 8(X, &5)

70 280
Temperature (K)

! Joint with M. Schillinger, M. Samarin, R. Knutti, and N. Meinshausen. arXiv:2509.26258 .



Powerful compared to classical stat methods:

o

Classical statistics @ Machine learning

Density estimation Engression Generative models

simple yet powerful tool
for distribution learning

Simple compared to modern generative models:
capacity of neural networks alleviates limitations

o computationally lighter:
of parametric model specifications

one-step sampling, no discriminator/minmax

scalable to (very) high-dimensional X and Y o fewer tuning parameters

no quantile crossing o focus on downstream estimation and inference



Problem | Out-of-support covariate shifts (extrapolation)?

!S. and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024



Challenge of nonlinear extrapolation

Air-quality data with measurements of two pollutants

training data training data training data
6 test data 6 test data 6 test data
«  predictions « predictions «  predictions(3)
predictions(5)
predictions(7)
predictions(9)

!

3 x
g 2

0 0 i

-2 -2 -2

-4 -4 -4

-2 0 2 4 6 8 10 -2 0 2 4 6 8 10 -2 0
NMHC NMHC
Linear regression Random Forests Neural network regression®

!Predictions from different random initializations and NN architectures with 3, 5, 7, or 9 layers
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Engression makes a difference

The reliability of engression does not break down immediately at the support boundary.

training data

6 test data

« predictions(3-layer)
« predictions(5-layer)
4 « predictions(7-layer)
predictions(9-layer)

X D
g N
R
0 o,
-2
-4
2 0 2 a 6 8 10
NMHC

Results of engression with 3, 5, 7, or 9 layers and random initializations.



Additive noise models (ANMs)

Post-ANM: Y = g(X)+n Pre-ANM: Y = g(X+n)
50 50
training data training data
— gx) — g(x)
40 quantiles 40 quantiles
i ) n
g(.x])+316 (1) g0+, (e, yp) 11
J’? 30
> >
20 20
10 10
8(x) + 17y o, . g0 +1
B SUF
2 X4 6 X 8 2 Nt %4 6 X gl
X X

All models are wrong, but can one of them be useful in terms of extrapolation?



Additive noise models (ANMs)

Post-ANM: Y = g(X)+n Pre-ANM: Y = g(X+n)
50 50
training data training data
— g(x) — 9(x)
40 quantiles 40 quantiles
()Y (1, Y n
8 (1), gCr + O Y1
, 30
J [}
> >
20 20
10 10
g() +11 L,
0 (3:32) g+ i (9 )
0 o %2, V2
2 X4 6 X 8 2 ot %4 6 XN 8l
X X

v

V" Pre-additive noises reveal some information about the true function outside the support.



Distributional learning

Pre-ANM: Y = g(X + 1)

50
training data
— 9
40 quantiles
()N
gl + 1, 0, Y
30
>
20
10
X, + 1,
R = (8]
0
2 Xt X4 6 XN 8h+n

X

¥ To capture the information from the pre-additive noise, one
needs to fit the full conditional distribution of Y given X.
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Engression has the two ingredients for extrapolation

v Engression is a distributional learning method.

v Engression model class {g(x,¢)} contains pre-ANMs {g(W "x+h(¢)): g € G, h € H},
where h(e) represents the pre-additive noise; g, h, and W are to be learned.



Regression fails to extrapolate

Theory setup:
o True model Y = g*(X + n); pre-ANM class {g(x + h(¢)) : g € G, h € H}; G strictly monotone;
o (For simplicity) symmetric noise 17 € [—7max, Nmax]; training support (—o0, Xmax]-

Proposition (S. and Meinshausen, '24)
Let i, := argmingcg Ep,, |Y — g(X)|. For any x > Xmax, we have

sup |g(x) — g"(x)| = oc.
g€,




Engression can extrapolate up to a certain point

Theory setup:

o

o

o

o

True model Y = g*(X + n); pre-ANM class {g(x + h(e)) : g € G, h € H}; G strictly monotone;

(For simplicity) symmetric noise 7 € [—Nmax, IJmax]; training support (—o0, Xmax]-

Theorem (S. and Meinshausen, '24)

We have g(X) = g*(x) for all x < Xmax + Nmax, and F)(g) < n.

Population engression (g, F)) recovers the true model beyond the training support.

Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.



Numerical example

1.0

0.5

0.0

-0.5

training data

test data
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NN quantile regression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.
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Engression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.
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Large-scale real-data experiments

2.0
I

1.0

X gcm
&8 abrupt
& nhanes
n
L}
L]

L2-LOSS L2-REGRESSION (log-scale)

05
I

singlecell
birth
air

0.2

L2-LOSS ENGRESSION (log-scale)

Figure: Out-of-support losses (in log-scale) of engression and regression for various data configurations,

averaging over all hyperparameter settings.
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Takeaway |

Engression + pre-ANM = better extrapolation than standard regression

training data / training data
6 test data 6 test data
«  predictions(3) « predictions(3-layer)
= predictions(5) = predictions(S-layer)
4| ¢ predictions(7) /

4 « predictions(7-layer)
predictions(9)

predictions(9-layer)
|

0 R M
SR
-2 o \
-4 -4
o 2 9 3 i 6 8 10
NMHC
NN regression engression
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Problem Il General shifts!

'Henzi, S., Law, and Biihlmann, “Invariant Probabilistic Prediction,” Biometrika, 2024



Invariant Probabilistic Prediction (IPP)

o Heterogeneous (multi-environment) data: fore=1,..., m,

X¢ = he(Ex)
Ye — g*(XE,EY)

o Given a proper scoring rule S and a model Py(y|x), “engression risk” per environment
R5(0) = E[-S(Po(y]X?), V)]

o Population IPP (invariant engression):
; 1 - e 1
— R D(R .., RY
i 2 2 RE(0) £ AD(RYO). ... REO)

where D(v) = # doiiza(vi— vj)2, A > 0 tuning parameter. A\ = 0: naive engression.
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Single-cell data application

Single-cell RNA-sequencing data (Replogle et al. '22)

o 10 genes: a response and 9 predictors
o 10 training environments: 1 observational + 9 interventional

o 50 test environments that can be very different from training
environments, due to interventions on unobserved genes

How robust our prediction model is on test environments?
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Results on single-cell data

IPP Competitors
[ ]
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[1] Rothenh&usler et al. '21; [2] Kook et al. '22; [3] S., Biihimann, and Taeb, '23; [4] Krueger et al. '21 "



Takeaway |l

Invariant distributional learning identifies a more robust prediction model
than methods that only target robust mean prediction.
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Problem Il Causal effect estimationt

'Holovchak, Saengkyongam, Meinshausen, S., “Distributional Instrumental Variable Method,” arXiv:2502.07641



Instrumental variable model

Treatment X, outcome Y, instrumental variable Z.

X <_g(ZaTIX)
Y « f(X777Y)

where f, g can be nonlinear, and nx and ny are correlated due to latent confounder H.

What would happen if everyone were given treatments X = x? i.e.

Estimand: do-interventional distribution P(Y|do(X = x)) or P(Y(x))
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Identifiability

Theorem (HSMS '25)

Assume for all z € supp(Z), g(z,-) is strictly monotone, and for all x € supp(X), supp(nx|X =
x) = supp(nx). Then, for all x € supp(X), the interventional distribution P(Y|do(X := x)) is
uniquely determined from the observed data distribution Pups(x, y|z).

V" Estimate Pobs(Xa}’|Z)yiﬁi:C>i identify P(Y|do(X := x))

necessary?
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“Under-identified” case

o One binary IV Z € {0, 1}, two continuous treatments Xi, X» P
X1 = gi1(Z,m) @ N
Xo = g2(Z,m2) @< >®
Y = 0iX1+ 52Xo +ny @
o Two-stage least-squares (2SLS) would fail as E[X1|Z] and E[X3|Z] are collinear.
o Distributional identifiability holds:

Theorem. Assume (Xj|Z = 0) % (c + Xi|Z = 1), for any constant c, for
i =1,2. Then (51 and [, are uniquely determined from Pops(x1, x2, ¥|2).
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Distributional instrumental variable (DIV) method

Joint generative model:
nx = hx(ex,en)
ny = hy(ey,en)
X = g(Z,nx) 16y

g e

where ex, ey, ey are independent standard Gaussians.

} confounded noises
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Distributional instrumental variable (DIV) method

DIV solution (engression applied to (X, Y)|Z):

argmin B | [[(X, V) — (X, Y)[l2 = S[I(X, Y) = (X, Y))2]

fuguhX:hY
where
X = g(Z,hx(ex,en)) Y = f()A(, hy(ey,en))
)%I = g(Z, hX(Eleng)) ?I = f(xl’ hY(‘Eleng))
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Estimation of the interventional distribution and its functionals

DIV solution f*, h}, enables sampling from the interventional distribution:

F(x, % (ey, en)) ~ P(Y|do(X = x)), Vx.

o Estimation of the interventional mean function
p(x) == E[f*(x, hy(ev,en))]-

Average treatment effect: p*(x1) — p*(xo)

o Estimation of the interventional quantile function
9o (x) = Qulf"(x, hy(ev,en))l-

Quantile treatment effect: g (x1) — g% (x0)
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Simulation: interventional mean estimation in an ‘under-identified’ case

Setting: Z ~ Unif(—3,3), H,ex,ey ~ Unif(—1,1) mutually independent, a € R is a tuning parameter;
X=Z(a+2H+ex), Y =(1+exp(—(X +2H +¢ey)/3))7 L.

It holds E(X|Z) = aZ and Var(X|Z) = 3Z?, where « controls the dependence of the
conditional mean of X|Z.

a=0 a=1 «o=5

DIV 0.002 0.002 0.002
HSIC-X 2.693 0.333 0.344
CF linear 141941 0476 1.625
CF nonlinear 2762 0.243 0.057
DeepGMM 1.158 0.274 0.005
DeeplV 0.675 0.305 0.102

Table: MSE of the estimated interventional mean functions.

Baselines: CF (Heckman, 76, Newey et al., 99, Guo & Small, 16); DeeplV (Hartford et al., 17); DeepGMM (Bennett
et al., 20); HSIC-X (Saengkyongam et al., 22)
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Takeaway Il

Distributional causal learning can identify the causal effects in more cases than 25LS.
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Summary

Statistical Estimating the full distribution for better generalization beyond observed distributions

o Engression + pre-ANM = out-of-support covariate shifts (better extrapolation than regression)?

o Multi-environment, invariant engression = general shifts (more robust than methods that only
target the mean)?

o Engression + instrumental variable = causal effect estimation (more identification than 2SLS)3

Algorithmic How? Engression—simple yet powerful generative Al tool

Beyond generalization Have a problem involving distribution estimation? Try engression! Thank you!

15. and Meinshausen, “Engression: Extrapolation through the Lens of Distributional Regression,” JRSSB, 2024
2Henze, S., Law, and Biihlmann, “Invariant Probabilistic Prediction,” Biometrika, 2024

3Holovchak, Saengkyongam, Meinshausen, and S., “Distributional Instrumental Variable Method,” arXiv:2502.07641



