Generalization Beyond Observations: Distribution is All You Need?

Xinwei Shen

Department of Statistics, University of Washington

October 28, 2025

Classical setting

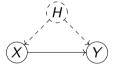
- Predictors $X \in \mathbb{R}^p$, response $Y \in \mathbb{R}^d$, training data $(X, Y) \sim P_{XY}$
- \circ Target: functionals of conditional distribution $P_{Y|X=x}^{\text{test}}$, e.g., conditional mean/quantiles
- Classical setting: $P_X^{\text{test}} = P_X$ and $P_{Y|X=x}^{\text{test}} = P_{Y|X=x}$
- Method: fit the target on training data by empirical risk minimization (ERM)

1

Potential problems

Cases where a naive ERM fit on training data may not be optimal:

- \circ Out-of-support covariate shifts (aka, extrapolation): beyond the training support of P_X
- Conditional shifts: shifts in $P_{Y|X}$
- \circ Causal effects: interventional distribution of the outcome Y given treatment X in the presence of latent confounders



Need to generalize beyond the observed data distribution P_{XY} .

A **distributional** perspective for generalization

- Observed data from P_{XY}
- Inferential target not a functional of P_{XY} . E.g., conditional mean function under distribution shifts, treatment effects...

Estimating the full observed data distribution (which allows to exploit more information from data) for better generalization beyond it.

Showcases:

- Out-of-support covariate shifts¹
- Conditional shifts²
- Causal effect estimation³

¹S. and Meinshausen, "Engression: Extrapolation through the Lens of Distributional Regression," JRSSB, 2024

²Henze, S., Law, and Bühlmann, "Invariant Probabilistic Prediction," *Biometrika*, 2024

³Holovchak, Saengkyongam, Meinshausen, S., "Distributional Instrumental Variable Method," arXiv:2502.07641

Goal of this talk

Develop distributional approaches that can generalize better beyond the observations.

How to estimate a distribution?

Distribution estimation in classical statistics

Random variables X and Y (X can be empty set)

Target:
$$P_{Y|X=x}$$

Methods: kernel density estimation, quantile regression, distributional regression (Koenker '05; Meinshausen '06; Dunson et al. '07; Hothorn et al. '14), etc.

Distribution estimation in classical statistics

- Restrictive parametric assumptions
- High computational cost with large sample sizes
- Not scalable to high dimensional responses
- Sampling is nontrivial! MCMC

Generative AI

Same goal: to learn a distribution by generating new samples from it.

Methods: diffusion models, generative adversarial networks, etc.

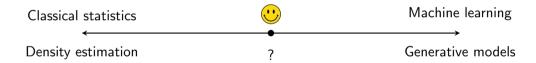
Excellent for images, texts, video.

What about scientific data, clinical data, etc?

Generative AI

- Computationally intensive GPU time is all you need
- Hyperparameter tuning
- Emphasis on data generation rather than inference
- Not easy as a plug-in for our statistical procedures

Distribution learning



as simple as classical stat methods as powerful as machine learning methods

9

Distributional learning via generative models

- Target: conditional distribution of Y|X
- Build a **generative model** to describe the distribution of Y|X:

$$Y = g(X, \varepsilon)$$

where $\varepsilon \sim P_{\varepsilon}$ pre-defined and map $g:(x,\varepsilon)\mapsto y$ is often parametrized by neural networks.

- Goal: find g such that $g(x,\varepsilon) \sim P_{Y|X=x}$ for any x
- \circ Sampling-based inference: a model to sample from $P_{Y|X=x}$

Proper scoring rule

• Given a distribution P and an observation z, the energy score¹ is defined as

$$\mathsf{ES}(P,z) = \frac{1}{2} \mathbb{E}_{(Z,Z') \sim P \otimes P} \|Z - Z'\|_2 - \mathbb{E}_P \|Z - z\|_2.$$

• Strictly proper scoring rule: for any P, we have $\mathbb{E}_{Z \sim P^*}[\mathsf{ES}(P, Z)] \leq \mathbb{E}_{Z \sim P^*}[\mathsf{ES}(P^*, Z)]$, where "=" $\Leftrightarrow P = P^*$.

¹Gneiting and Raftery, 2007

Our distributional learning method engression

Population solution:

$$\begin{split} \tilde{g} &\in \operatorname*{argmin}_{g \in \mathcal{G}} \mathbb{E}_{(X,Y) \sim P}[-\mathsf{ES}(P_g(.|X),Y)] \\ &= \operatorname*{argmin}_{g \in \mathcal{G}} \mathbb{E}\Big[\|Y - g(X,\varepsilon)\|_2 - \frac{1}{2} \|g(X,\varepsilon) - g(X,\varepsilon')\|_2 \Big] \end{split}$$

where $P_g(.|x)$ is the distribution of $g(x,\varepsilon)$ and ε,ε' are independent draws from $\mathcal{N}(0,I)$.

- **Proposition**: under correct model specification, we have $\tilde{g}(x, \varepsilon) \sim P_{Y|X=x}$, $\forall x \in \text{supp}(P_X)$.
- o Algorithm: neural network G, empirical risk, (stochastic) gradient descent.

Estimation of the functionals

Monte Carlo: for a fixed test point x,

- **1** Draw a sample of ε , i.e., $\varepsilon_1, \ldots, \varepsilon_m$;
- ② Then $\tilde{g}(x, \varepsilon_i)$, i = 1, ..., m is a sample of the estimated distribution of Y|X = x;
- Obtain estimators:
 - o conditional mean estimation: $\hat{\mathbb{E}}_{\varepsilon}[\tilde{g}(x,\varepsilon)]$
 - \circ conditional lpha-quantile estimation: $\hat{Q}_{lpha}(ilde{g}(x,arepsilon))$

Our R and Python packages¹

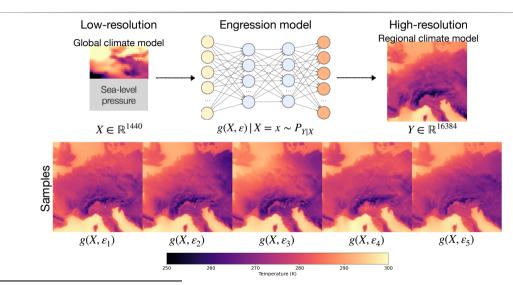
```
R: install.packages("engression")
```

```
> library(engression)  ## load engression package
> engressor = engression(X, Y)  ## fit an engression model
> predict(engressor, Xtest, type="mean")  ## mean prediction
> predict(engressor, Xtest, type="quantile", quantiles=c(0.1, 0.5, 0.9))  ## quantile prediction
> predict(engressor, Xtest, type="sample", nsample=100)  ## sampling
```

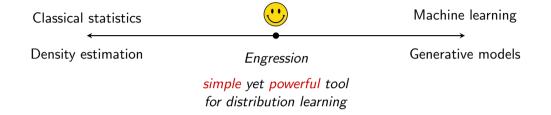
Python: pip install engression

¹ http://github.com/xwshen51/engression

Engression for climate downscaling¹



¹ Joint with M. Schillinger, M. Samarin, R. Knutti, and N. Meinshausen. arXiv:2509.26258



Powerful compared to classical stat methods:

- capacity of neural networks alleviates limitations of parametric model specifications
- \circ scalable to (very) high-dimensional X and Y
- no quantile crossing

Simple compared to modern generative models:

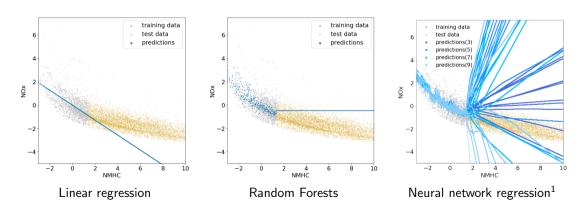
- computationally lighter: one-step sampling, no discriminator/minmax
- fewer tuning parameters
- o focus on downstream estimation and inference

Problem I Out-of-support covariate shifts (extrapolation)¹

¹S. and Meinshausen, "Engression: Extrapolation through the Lens of Distributional Regression," *JRSSB*, 2024

Challenge of nonlinear extrapolation

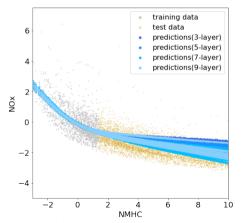
Air-quality data with measurements of two pollutants



¹Predictions from different random initializations and NN architectures with 3, 5, 7, or 9 layers

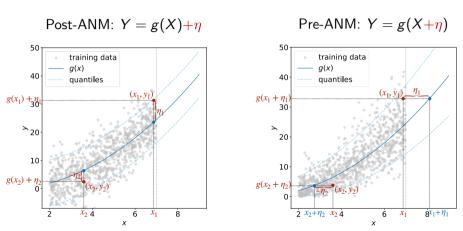
Engression makes a difference

The reliability of engression does not break down immediately at the support boundary.



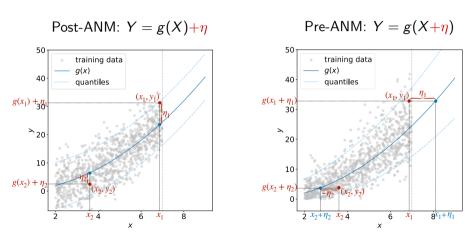
Results of engression with 3, 5, 7, or 9 layers and random initializations.

Additive noise models (ANMs)



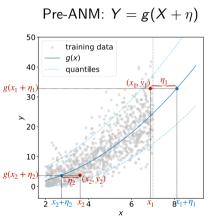
All models are wrong, but can one of them be useful in terms of extrapolation?

Additive noise models (ANMs)



 $\stackrel{\sim}{V}$ Pre-additive noises reveal some information about the true function outside the support.

Distributional learning



To capture the information from the pre-additive noise, one needs to fit the full conditional distribution of Y given X.

Engression has the two ingredients for extrapolation

- ✓ Engression is a distributional learning method.
- ✓ Engression model class $\{g(x,\varepsilon)\}$ contains **pre-ANMs** $\{g(W^{\top}x+h(\varepsilon)):g\in\mathcal{G},h\in\mathcal{H}\}$, where $h(\varepsilon)$ represents the pre-additive noise; g,h, and W are to be learned.

Regression fails to extrapolate

Theory setup:

- True model $Y = g^*(X + \eta)$; pre-ANM class $\{g(x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}$; \mathcal{G} strictly monotone;
- (For simplicity) symmetric noise $\eta \in [-\eta_{\text{max}}, \eta_{\text{max}}]$; training support $(-\infty, x_{\text{max}}]$.

Proposition (S. and Meinshausen, '24)

Let $\mathcal{F}_{L_1} := \operatorname{argmin}_{g \in \mathcal{G}} \mathbb{E}_{P_{\operatorname{tr}}} |Y - g(X)|$. For any $x > x_{\operatorname{max}}$, we have

$$\sup_{g\in\mathcal{F}_{L_1}}|g(x)-g^{\star}(x)|=\infty.$$

Engression can extrapolate up to a certain point

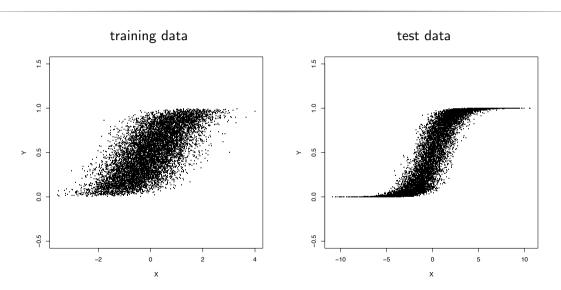
Theory setup:

- True model $Y = g^*(X + \eta)$; pre-ANM class $\{g(x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}$; \mathcal{G} strictly monotone;
- (For simplicity) symmetric noise $\eta \in [-\eta_{\text{max}}, \eta_{\text{max}}]$; training support $(-\infty, x_{\text{max}}]$.

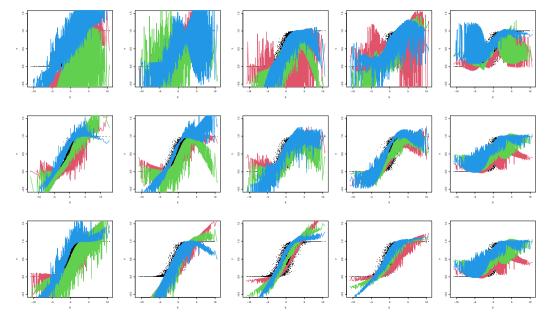
We have
$$\tilde{g}(x) = g^*(x)$$
 for all $x \leq x_{\text{max}} + \eta_{\text{max}}$, and $\tilde{h}(\varepsilon) \stackrel{d}{=} \eta$.

- Population engression (\tilde{g}, \tilde{h}) recovers the true model beyond the training support.
- o Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.

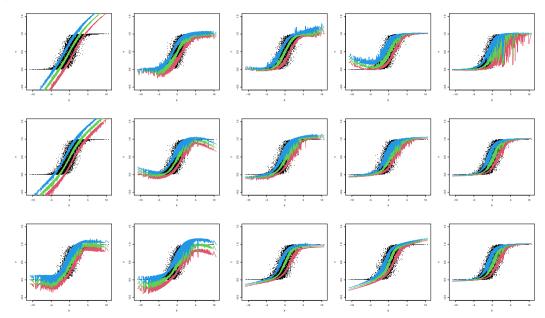
Numerical example



NN quantile regression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.



Engression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.



Large-scale real-data experiments

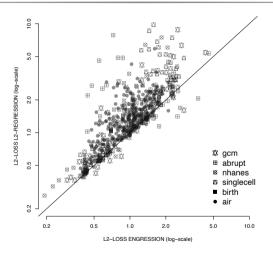
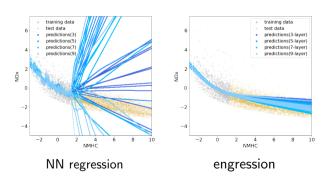


Figure: **Out-of-support losses** (in log-scale) of engression and regression for various data configurations, averaging over all hyperparameter settings.

Takeaway I

Engression + pre-ANM \Rightarrow better extrapolation than standard regression



Problem II General shifts¹

¹Henzi, S., Law, and Bühlmann, "Invariant Probabilistic Prediction," Biometrika, 2024

Invariant Probabilistic Prediction (IPP)

• Heterogeneous (multi-environment) data: for e = 1, ..., m,

$$X^e = h^e(\varepsilon_X)$$

 $Y^e = g^*(X^e, \varepsilon_Y)$

o Given a proper scoring rule S and a model $P_{\theta}(y|x)$, "engression risk" per environment

$$\mathcal{R}_{S}^{e}(\theta) = \mathbb{E}[-S(P_{\theta}(y|X^{e}), Y^{e})].$$

Population IPP (invariant engression):

$$\min_{\theta} \ \frac{1}{m} \sum_{e=1}^{m} \mathcal{R}_{S}^{e}(\theta) + \lambda D(\mathcal{R}_{S}^{1}(\theta), \dots, \mathcal{R}_{S}^{m}(\theta))$$

where $D(v) = \frac{1}{m^2} \sum_{i,j=1}^{m} (v_i - v_j)^2$, $\lambda \ge 0$ tuning parameter. $\lambda = 0$: naive engression.

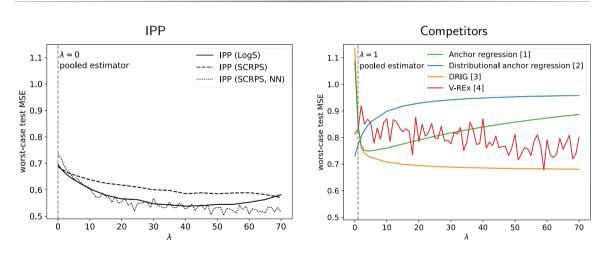
Single-cell data application

Single-cell RNA-sequencing data (Replogle et al. '22)

- 10 genes: a response and 9 predictors
- \circ 10 training environments: 1 observational + 9 interventional
- 50 test environments that can be very different from training environments, due to interventions on unobserved genes

How robust our prediction model is on test environments?

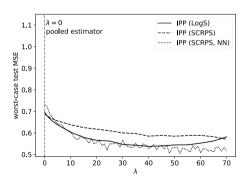
Results on single-cell data

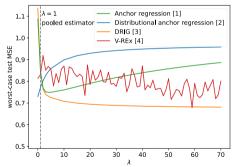


^[1] Rothenhäusler et al. '21; [2] Kook et al. '22; [3] **S.**, Bühlmann, and Taeb, '23; [4] Krueger et al. '21

Takeaway II

Invariant distributional learning identifies a more robust prediction model than methods that only target robust mean prediction.





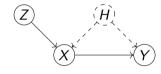
Problem III Causal effect estimation¹

¹Holovchak, Saengkyongam, Meinshausen, S., "Distributional Instrumental Variable Method," arXiv:2502.07641

Instrumental variable model

Treatment X, outcome Y, instrumental variable Z.

$$X \leftarrow g(Z, \eta_X)$$
$$Y \leftarrow f(X, \eta_Y)$$



where f, g can be nonlinear, and η_X and η_Y are correlated due to latent confounder H.

What would happen if everyone were given treatments X = x? i.e.

Estimand: do-interventional distribution P(Y|do(X=x)) or P(Y(x))

Identifiability

Theorem (HSMS '25)

Assume for all $z \in \operatorname{supp}(Z)$, $g(z, \cdot)$ is strictly monotone, and for all $x \in \operatorname{supp}(X)$, $\operatorname{supp}(\eta_X|X = x) = \operatorname{supp}(\eta_X)$. Then, for all $x \in \operatorname{supp}(X)$, the interventional distribution P(Y|do(X := x)) is uniquely determined from the observed data distribution $P_{\operatorname{obs}}(x, y|z)$.

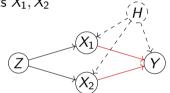
Estimate
$$P_{\text{obs}}(x, y|z) \stackrel{\text{sufficient}}{\underset{\text{necessary?}}{\longleftrightarrow}} identify \ P(Y|do(X := x))$$

"Under-identified" case

 \circ One binary IV $Z \in \{0,1\}$, two continuous treatments X_1,X_2

$$X_1 = g_1(Z, \eta_1)$$

 $X_2 = g_2(Z, \eta_2)$
 $Y = \frac{\beta_1}{2}X_1 + \frac{\beta_2}{2}X_2 + \eta_Y$



- Two-stage least-squares (2SLS) would **fail** as $\mathbb{E}[X_1|Z]$ and $\mathbb{E}[X_2|Z]$ are collinear.
- Distributional identifiability holds:

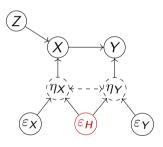
Theorem. Assume $(X_i|Z=0) \neq (c+X_i|Z=1)$, for any constant c, for i=1,2. Then β_1 and β_2 are uniquely determined from $P_{\text{obs}}(x_1,x_2,y|z)$.

Distributional instrumental variable (DIV) method

Joint generative model:

$$\eta_X = h_X(\varepsilon_X, \varepsilon_H)
\eta_Y = h_Y(\varepsilon_Y, \varepsilon_H)
X = g(Z, \eta_X)
Y = f(X, \eta_Y)$$

where $\varepsilon_X, \varepsilon_Y, \varepsilon_H$ are independent standard Gaussians.



Distributional instrumental variable (DIV) method

DIV solution (engression applied to (X, Y)|Z):

$$\underset{f,g,h_X,h_Y}{\text{argmin}} \ \mathbb{E}\left[\|(X,Y) - (\hat{X},\hat{Y})\|_2 - \frac{1}{2}\|(\hat{X},\hat{Y}) - (\hat{X}',\hat{Y}')\|_2\right],$$

where

$$\hat{X} := g(Z, h_X(\varepsilon_X, \varepsilon_H)) \qquad \hat{Y} := f(\hat{X}, h_Y(\varepsilon_Y, \varepsilon_H))
\hat{X}' := g(Z, h_X(\varepsilon_X', \varepsilon_H')) \qquad \hat{Y}' := f(\hat{X}', h_Y(\varepsilon_Y', \varepsilon_H'))$$

38

Estimation of the interventional distribution and its functionals

DIV solution f^* , h_Y^* enables sampling from the interventional distribution:

$$f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H)) \sim P(Y|do(X = x)), \quad \forall x.$$

Estimation of the interventional mean function

$$\mu^*(x) := \mathbb{E}[f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H))].$$

Average treatment effect: $\mu^*(x_1) - \mu^*(x_0)$

Estimation of the interventional quantile function

$$q_{\alpha}^*(x) := Q_{\alpha}[f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H))].$$

Quantile treatment effect: $q_{\alpha}^{*}(x_{1}) - q_{\alpha}^{*}(x_{0})$

Simulation: interventional mean estimation in an 'under-identified' case

Setting: $Z \sim \text{Unif}(-3,3)$, $H, \varepsilon_X, \varepsilon_Y \sim \text{Unif}(-1,1)$ mutually independent, $\alpha \in \mathbb{R}$ is a tuning parameter; $X = Z(\alpha + 2H + \varepsilon_X)$, $Y = (1 + \exp(-(X + 2H + \varepsilon_Y)/3))^{-1}$.

It holds $\mathbb{E}(X|Z) = \alpha Z$ and $\text{Var}(X|Z) = \frac{5}{3}Z^2$, where α controls the dependence of the conditional mean of X|Z.

	$\alpha = 0$	$\alpha = 1$	$\alpha = 5$
DIV	0.002	0.002	0.002
HSIC-X	2.693	0.333	0.344
CF linear	141.941	0.476	1.625
CF nonlinear	2.762	0.243	0.057
DeepGMM	1.158	0.274	0.005
DeepIV	0.675	0.305	0.102

Table: MSE of the estimated interventional mean functions.

Baselines: CF (Heckman, 76, Newey et al., 99, Guo & Small, 16); DeepIV (Hartford et al., 17); DeepGMM (Bennett et al., 20); HSIC-X (Saengkyongam et al., 22)

Takeaway III

Distributional causal learning can identify the causal effects in more cases than 2SLS.

Summary

Statistical Estimating the full distribution for better generalization beyond observed distributions

- \circ Engression + pre-ANM \Rightarrow out-of-support covariate shifts (better extrapolation than regression)¹
- \circ Multi-environment, invariant engression \Rightarrow general shifts (more robust than methods that only target the mean)²
- \circ Engression + instrumental variable \Rightarrow causal effect estimation (more identification than 2SLS)³

Algorithmic How? Engression—simple yet powerful generative Al tool

Beyond generalization Have a problem involving distribution estimation? Try engression! Thank you!

¹S. and Meinshausen, "Engression: Extrapolation through the Lens of Distributional Regression," *JRSSB*, 2024

²Henze, S., Law, and Bühlmann, "Invariant Probabilistic Prediction," *Biometrika*, 2024

³Holovchak, Saengkyongam, Meinshausen, and S., "Distributional Instrumental Variable Method," arXiv:2502.07641