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Distributional Causal Effect Estimation [1]

Setting
Treatment X , outcome Y , instrumental variable Z

X ← g(Z, ηX)
Y ← f (X, ηY )

H

X Y

Z

where f, g can be nonlinear, and ηX and ηY are correlated due to H .

Estimand: do-interventional distribution P (Y |do(X := x))

Identifiability
Pobs(x, y|z) uniquely identifies P (Y |do(X := x)).

• sufficient: estimating Pobs is sufficient for identifying P (Y |do(X := x));
• necessary:

the full distribution Pobs is sometimes also necessary for identification.

“Under-identified” example: one binary IV, two continuous treatments,
Y = β1X1 + β2X2 + ηY .

• 2SLS fails as E[X1|Z] and E[X2|Z] are collinear.
• Distributional procedure has identification.

Assume (Xi|Z = 0) ∕ d= (c + Xi|Z = 1), for any constant c, for i = 1, 2.
Then β1 and β2 are uniquely determined from Pobs(x1, x2, y|z).

Distributional Instrumental Variable (DIV) Method
• Joint generative model:

ηX = hX(εX, εH)
ηY = hY (εY , εH)

󰀼
󰁀

󰀾 confounded noises

X = g(Z, ηX)
Y = f (X, ηY )

• DIV (engression applied to (X, Y )|Z ):

min
f,g,hX,hY

E
󰀥

󰀂(X, Y ) − (X̂, Ŷ )󰀂 − 1
2󰀂(X̂, Ŷ ) − (X̂ ′, Ŷ ′)󰀂

󰀦

,

where (X̂, Ŷ ) and (X̂ ′, Ŷ ′) are independently sampled from the
generative model conditional on Z.

DIV solution f ∗, h∗
Y enables sampling from the interventional distribution:

f ∗(x, h∗
Y (εY , εH)) ∼ P (Y |do(X := x)), ∀x.

Histograms of P (Y |do(X := x)) for different x
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Distributional Learning: from Methodology to Applications
Methodology: Engression is a general method to estimate
(conditional) distributions.
Cf. traditional distributional regression (e.g., quantile regression):
• no quantile crossing
• capacity of neural networks alleviates limitations of parametric

assumptions
• scalable to (very) high-dimensional X and Y

Cf. modern generative models (e.g., diffusion model, GAN):
• computationally lighter, fewer tuning parameters
• focus on downstream estimation and inference
• extension to complex distributions: multi-step engression [5]

Adaptation to various statistical problems
that involve distribution estimation
• distributional causal effect estimation [1] (engression + IV)
• distributionally lossless dimension reduction [3] (unsupervised engression)
where estimating the distribution allows stronger identification
• extrapolation in nonparametric regression [2] (engression + pre-ANM)
• “under-identified” instrumental variable regression [1]
• robust prediction under distribution shifts [4] (invariant engression)
Applications to scientific problems
• Climate science: statistical emulation of physical climate models
• Single-cell genomics, proteomics: prediction for unseen perturbation [4, 6]

󰂏 Engression Methodology 󰂏

Modeling and Fitting
• Generative model for the target distribution:

Y = g(X, ε)
where ε ∼ N (0, I) and g is parametrized by neural networks.

• Energy score: given a distribution P and an observation z

ES(P, z) = 1
2E(Z,Z ′)∼P⊗P󰀂Z − Z ′󰀂2 − EP󰀂Z − z󰀂2.

∀P , EP 󰂏[ES(P, Z)] ≤ EP 󰂏[ES(P 󰂏, Z)], where “=” ⇔ P = P 󰂏.
• Engression solution: g̃ solves

min
g

E[−ES(Pg(·|X), Y )] = E
󰀗
󰀂Y −g(X, ε)󰀂2 − 1

2󰀂g(X, ε)−g(X, ε′)󰀂2

󰀘

where g(x, ε) ∼ Pg(·|X); ε, ε′ are independent draws from N (0, I).

Sampling-based Estimation
Engression model allows sampling from the target conditional dist.:

Under correct model specification, we have
g̃(x, ε) ∼ PY |X=x, ∀x ∈ supp(PX)

Point estimation by Monte Carlo
• Given x, sample ε1, . . . , εm ∼ N (0, I);
• Then g̃(x, εi), i = 1, . . . , m is a sample of the estimated PY |X=x;
• Obtain estimators:

• conditional mean estimation: Êε[g̃(x, ε)]
• conditional α-quantile estimation: Q̂α(g̃(x, ε))

Prediction intervals: [Q̂1−α(g̃(x, ε)), Q̂α(g̃(x, ε))]

Extrapolation in Nonparametric Regression [2]

Ingredients for Extrapolation:
• Pre-additive noise model reveals some information about the true

function outside the support.
Y = g(X+η).

• Distributional learning: to capture the pre-additive noise for extrap-
olation, one needs to fit the full conditional distribution of Y |X .

Theory
• Truth Y = g󰂏(X + η); model class {g(x + h(ε)) : g ∈ G, h ∈ H}; G strictly monotone;
• (For simplicity) symmetric noise η ∈ [−ηmax, ηmax]; training support (−∞, xmax].

Regression fails to extrapolate:
Let FL1 := argming∈G E|Y − g(X)|. For any x > xmax, we have

sup
g∈FL1

|g(x) − g󰂏(x)| = ∞.

Engression can extrapolate up to a certain point:
We have g̃(x) = g󰂏(x) for all x ≤ xmax + ηmax, and h̃(ε) d= η.

Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.

Linear regression Random Forests Neural network regression Engression

Robust Prediction under Distribution Shifts [4]

Heterogeneous (multi-environment) data: for e = 1, . . . , m,
Xe = he(εX)
Y e = g󰂏(Xe, εY ).

Given a proper scoring rule S and a model Pθ(·|x), “engression risk” per
environment

Re
S(θ) = E[−S(Pθ(·|Xe), Y e)].

Invariant Probabilistic Prediction (IPP, invariant engression):

min
θ

1
m

m󰁛

e=1
Re

S(θ) + λD(R1
S(θ), . . . , Rm

S (θ))

where D(v) = 1
m2

󰁓m
i,j=1(vi − vj)2, λ ≥ 0, λ = 0: naive engression.

Single-cell RNA-sequencing data
• 10 genes: a response and 9 predictors
• 50 test environments due to interventions on unobserved genes

IPP Competitors

Invariant distributional learning identifies a more robust prediction model.

Distributionally Lossless Dimension Reduction [3]

• Classical methods (autoencoders, PCA): mean reconstruction
min
e,d

E
󰁫
󰀂X − d(e(X))󰀂2󰁬

⇒ lossy compression X ∕= d(e(X)) when reducing dimension.
• Ours: distributional reconstruction

d(z, ε) d=
󰀓
X|e(X) = z

󰀔
, ∀z.

⇒ Distributionally lossless compression:
d(e(X), ε) d= X irrespective of the latent dimension.

• Distributional Principal Autoencoder (DPA):
engression applied to X|e(X)

min
e,d

E
󰀗
󰀂X − d(e(X), ε)󰀂 − 1

2󰀂d(e(X), ε) − d(e(X), ε′)󰀂
󰀘
.

Climate Applications

Engression for Downscaling with M. Schillinger, M. Samarin, R. Knutti, and N. Meinshausen
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g(X, ε) |X = x ∼ P(y |x)X ∈ ℝ1440 Y ∈ ℝ16384

DPA for Global Precipitation Fields
true data AE recon. DPA reconstructed samples

PCA AE DPA

Q–Q plots of precipitations at a random location for test data vs. fitted reconstructions

Engression + RML [5] for Global Climate Model Emulation
Goal: the conditional distribution of global monthly precipitation on a
180 × 360 grid given time, forcing, etc.

• blue: test data from GCM (weeks on 103 − 104 CPU’s);
• orange: sampled time-series (a few minutes on single low-end GPU)

mailto:xwshen@uw.edu

