Distribution is All You Need?

Xinwei Shen

Department of Statistics, University of Washington, xwshen@uw.edu

Distributional Causal Effect Estimation [1]

Setting

Treatment X, outcome Y, instrumental variable Z

$$X \leftarrow g(Z, \eta_X)$$
$$Y \leftarrow f(X, \eta_Y)$$

where f, g can be nonlinear, and η_X and η_Y are correlated due to H.

Estimand: do-interventional distribution P(Y|do(X:=x))

Identifiability

 $P_{\text{obs}}(x,y|z)$ uniquely identifies P(Y|do(X:=x)).

• sufficient: estimating P_{obs} is sufficient for identifying P(Y|do(X:=x)); • necessary:

the full distribution P_{obs} is sometimes also necessary for identification.

"Under-identified" example: one binary IV, two continuous treatments,

$$Y = \beta_1 X_1 + \beta_2 X_2 + \eta_Y.$$

- 2SLS **fails** as $\mathbb{E}[X_1|Z]$ and $\mathbb{E}[X_2|Z]$ are collinear.
- Distributional procedure has identification.

Assume $(X_i|Z=0) \neq (c+X_i|Z=1)$, for any constant c, for i=1,2. Then β_1 and β_2 are uniquely determined from $P_{\text{obs}}(x_1, x_2, y|z)$.

Distributional Instrumental Variable (DIV) Method

• Joint generative model:

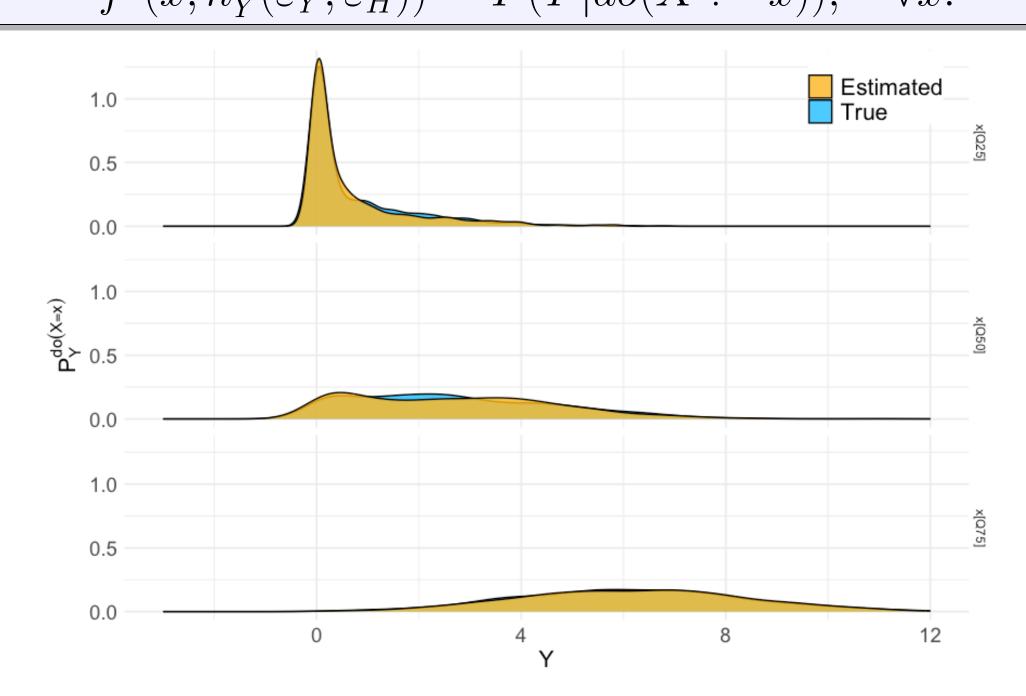
$$\eta_X = h_X(\varepsilon_X, \varepsilon_H)
\eta_Y = h_Y(\varepsilon_Y, \varepsilon_H)
X = g(Z, \eta_X)
Y = f(X, \eta_Y)$$
confounded noises

• DIV (engression applied to (X,Y)|Z):

$$\min_{f,g,h_X,h_Y} \mathbb{E}\left[\|(X,Y) - (\hat{X},\hat{Y})\| - \frac{1}{2}\|(\hat{X},\hat{Y}) - (\hat{X}',\hat{Y}')\|\right],$$

where (\hat{X}, \hat{Y}) and (\hat{X}', \hat{Y}') are independently sampled from the generative model conditional on Z.

DIV solution f^*, h_Y^* enables sampling from the interventional distribution: $f^*(x, h_Y^*(\varepsilon_Y, \varepsilon_H)) \sim P(Y|do(X := x)), \quad \forall x.$



Histograms of P(Y|do(X:=x)) for different x

References

- [1] A. Holovchak, S. Saengkyongam, N. Meinshausen, and X. Shen, "Distributional instrumental variable method," arXiv preprint arXiv:2502.07641, 2025.
- [2] X. Shen and N. Meinshausen, "Engression: Extrapolation from the Lens of Distributional Regression," Journal of the Royal Statistical Society: Series B, 2024.
- [3] X. Shen and N. Meinshausen, "Distributional Principal Autoencoders," arXiv preprint arXiv:2404.13649, 2024.
- [4] A. Henzi, X. Shen, M. Law, and P. Bühlmann, "Invariant Probabilistic Prediction," *Biometrika*, 2024.
- [5] X. Shen, N. Meinshausen, and T. Zhang, "Reverse markov learning: Multi-step generative models for complex distributions," arXiv preprint arXiv:2502.13747, 2025.
- [6] J. von Kügelgen, J. Ketterer, X. Shen, N. Meinshausen, and J. Peters, "Representation learning for distributional perturbation extrapolation," arXiv preprint arXiv:2504.18522, 2025.

Distributional Learning: from Methodology to Applications

Methodology: Engression is a general method to estimate (conditional) distributions.

Cf. traditional distributional regression (e.g., quantile regression):

- no quantile crossing
- capacity of neural networks alleviates limitations of parametric assumptions
- ullet scalable to (very) high-dimensional X and Y
- Cf. modern generative models (e.g., diffusion model, GAN):
- computationally lighter, fewer tuning parameters
- focus on downstream estimation and inference
- extension to complex distributions: multi-step engression [5]

Adaptation to various statistical problems

- that involve distribution estimation
- distributional causal effect estimation [1] (engression + IV)
- distributionally lossless dimension reduction [3] (unsupervised engression)
- where estimating the distribution allows stronger identification
- extrapolation in nonparametric regression [2] (engression + pre-ANM)
- "under-identified" instrumental variable regression [1]
- robust prediction under distribution shifts [4] (invariant engression)

Applications to scientific problems

- Climate science: statistical emulation of physical climate models
- Single-cell genomics, proteomics: prediction for unseen perturbation [4, 6]

* Engression Methodology *

Modeling and Fitting

• Generative model for the target distribution:

$$Y = g(X, \varepsilon)$$

where $\varepsilon \sim \mathcal{N}(0, I)$ and g is parametrized by neural networks.

• Energy score: given a distribution P and an observation z

$$ES(P, z) = \frac{1}{2} \mathbb{E}_{(Z, Z') \sim P \otimes P} ||Z - Z'||_2 - \mathbb{E}_P ||Z - z||_2.$$

 $\forall P, \mathbb{E}_{P^*}[\mathrm{ES}(P,Z)] \leq \mathbb{E}_{P^*}[\mathrm{ES}(P^*,Z)], \text{ where "="} \Leftrightarrow P = P^*.$

• Engression solution: \tilde{g} solves

$$\min_{g} \mathbb{E}[-\mathrm{ES}(P_g(\cdot|X),Y)] = \mathbb{E}[\|Y - g(X,\varepsilon)\|_2 - \frac{1}{2}\|g(X,\varepsilon) - g(X,\varepsilon')\|_2]$$

where $g(x,\varepsilon) \sim P_q(\cdot|X)$; ε,ε' are independent draws from $\mathcal{N}(0,I)$.

Extrapolation in Nonparametric Regression [2]

Ingredients for Extrapolation:

• Pre-additive noise model reveals some information about the true function outside the support.

$$Y = g(X + \eta).$$

• Distributional learning: to capture the pre-additive noise for extrapolation, one needs to fit the full conditional distribution of Y|X.

Theory

- Truth $Y = g^*(X + \eta)$; model class $\{g(x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}$; \mathcal{G} strictly monotone;
- (For simplicity) symmetric noise $\eta \in [-\eta_{\text{max}}, \eta_{\text{max}}]$; training support $(-\infty, x_{\text{max}}]$.

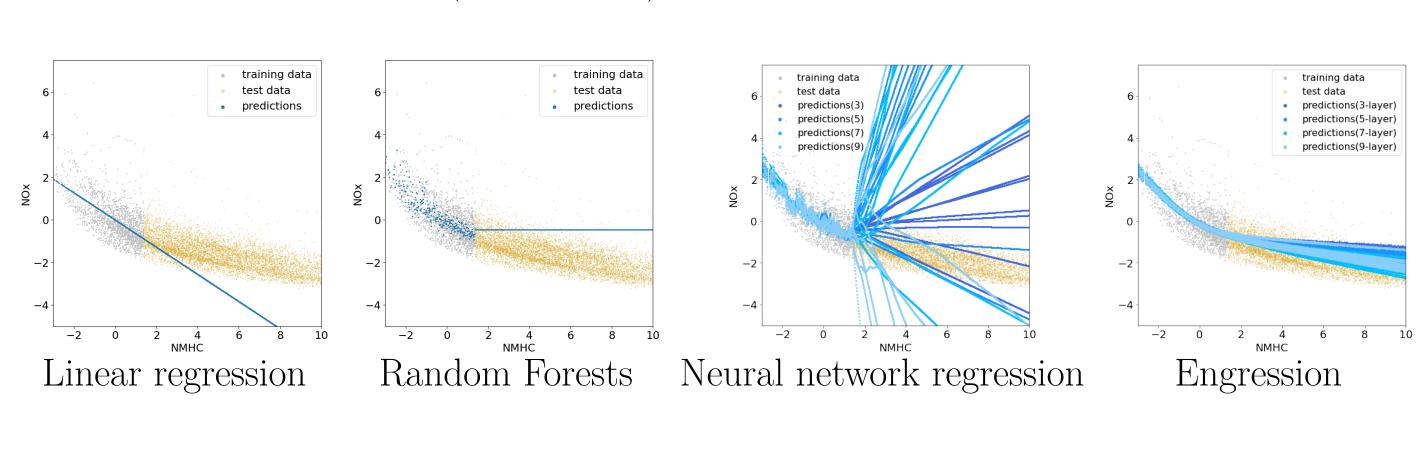
Regression fails to extrapolate:

Let
$$\mathcal{F}_{L_1} := \operatorname{argmin}_{g \in \mathcal{G}} \mathbb{E}|Y - g(X)|$$
. For any $x > x_{\max}$, we have
$$\sup_{g \in \mathcal{F}_{L_1}} |g(x) - g^*(x)| = \infty.$$

Engression can extrapolate up to a certain point:

We have
$$\tilde{g}(x) = g^*(x)$$
 for all $x \leq x_{\text{max}} + \eta_{\text{max}}$, and $\tilde{h}(\varepsilon) \stackrel{d}{=} \eta$.

Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.



Sampling-based Estimation

Engression model allows sampling from the target conditional dist.:

$$\tilde{g}(x,\varepsilon) \sim \mathbb{P}_{Y|X=x}, \ \forall x \in \text{supp}(\mathbb{P}_X)$$

Point estimation by Monte Carlo

- Given x, sample $\varepsilon_1, \ldots, \varepsilon_m \sim \mathcal{N}(0, I)$;
- Then $\tilde{g}(x, \varepsilon_i)$, $i = 1, \ldots, m$ is a sample of the estimated $\mathbb{P}_{Y|X=x}$;
- Obtain estimators:
- conditional mean estimation: $\hat{\mathbb{E}}_{\varepsilon}[\tilde{g}(x,\varepsilon)]$
- conditional α -quantile estimation: $Q_{\alpha}(\tilde{g}(x,\varepsilon))$

Prediction intervals: $[\hat{Q}_{1-\alpha}(\tilde{g}(x,\varepsilon)),\hat{Q}_{\alpha}(\tilde{g}(x,\varepsilon))]$

Robust Prediction under Distribution Shifts [4]

Heterogeneous (multi-environment) data: for $e = 1, \ldots, m$,

$$X^e = h^e(\varepsilon_X)$$

 $Y^e = g^*(X^e, \varepsilon_Y).$

Given a proper scoring rule S and a model $P_{\theta}(\cdot|x)$, "engression risk" per environment

$$\mathcal{R}_{S}^{e}(\theta) = \mathbb{E}[-S(P_{\theta}(\cdot|X^{e}), Y^{e})].$$

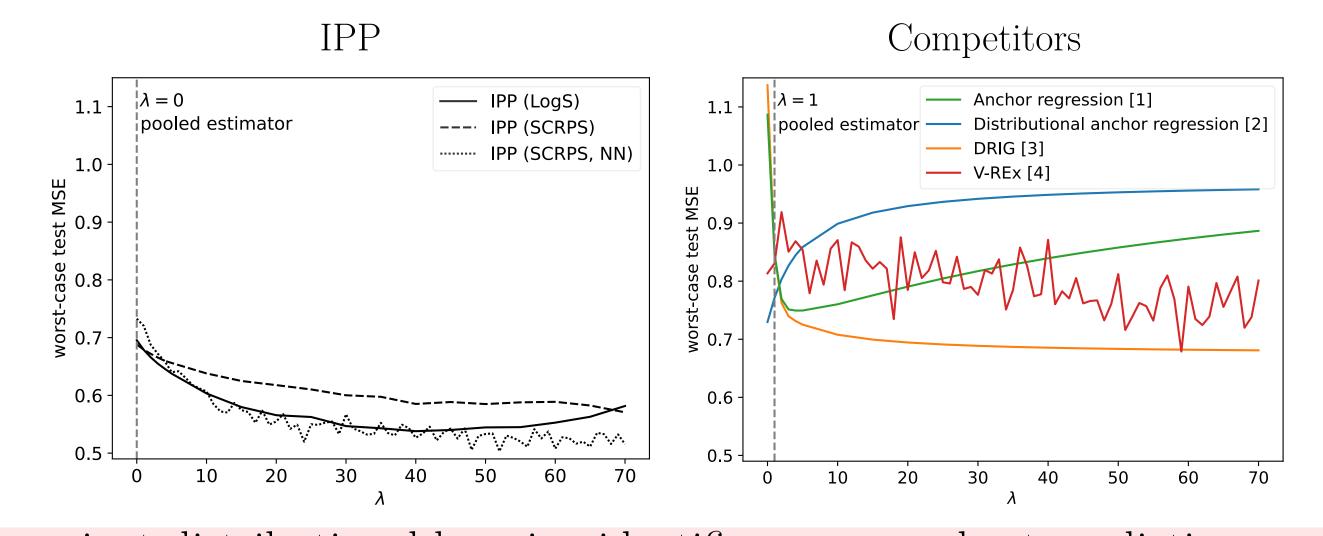
Invariant Probabilistic Prediction (IPP, invariant engression):

$$\min_{\theta} \frac{1}{m} \sum_{e=1}^{m} \mathcal{R}_{S}^{e}(\theta) + \lambda D(\mathcal{R}_{S}^{1}(\theta), \dots, \mathcal{R}_{S}^{m}(\theta))$$

where $D(v) = \frac{1}{m^2} \sum_{i,j=1}^m (v_i - v_j)^2$, $\lambda \ge 0$, $\lambda = 0$: naive engression.

Single-cell RNA-sequencing data

- 10 genes: a response and 9 predictors
- 50 test environments due to interventions on unobserved genes



Invariant distributional learning identifies a more robust prediction model.

Distributionally Lossless Dimension Reduction [3]

• Classical methods (autoencoders, PCA): mean reconstruction

$$\min_{e \in \mathcal{A}} \mathbb{E}[\|X - d(e(X))\|^2]$$

 \Rightarrow lossy compression $X \neq d(e(X))$ when reducing dimension.

Ours: distributional reconstruction

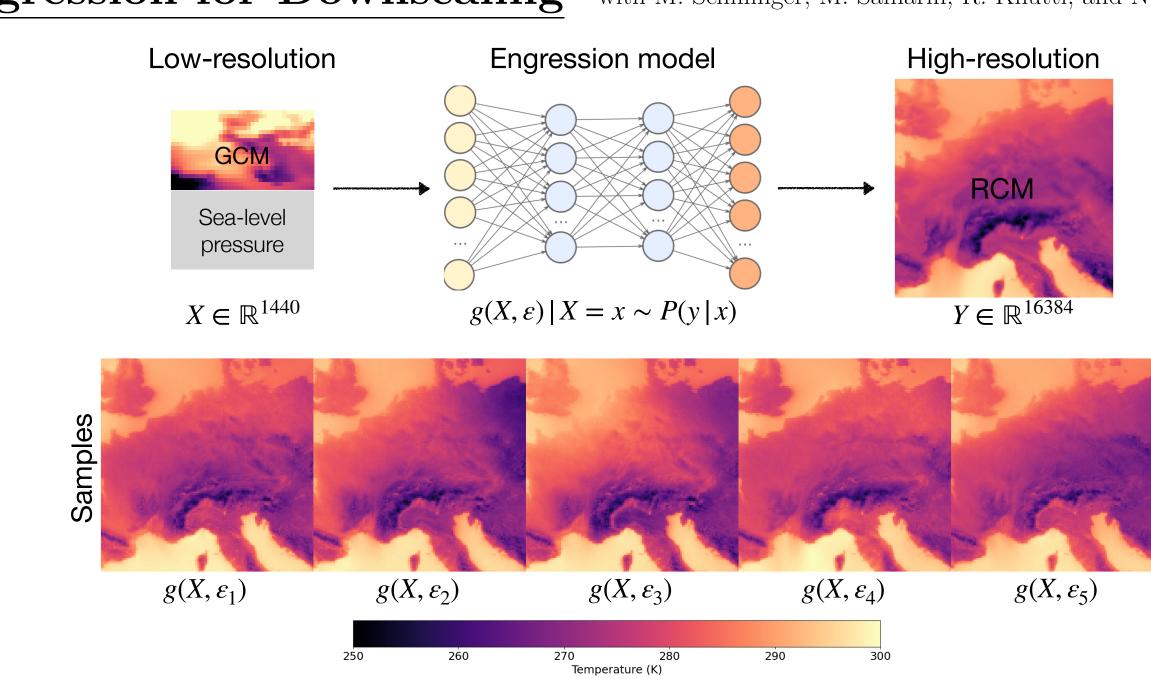
$$d(z,\varepsilon) \stackrel{d}{=} (X|e(X) = z), \ \forall z.$$

- \Rightarrow Distributionally lossless compression:
 - $d(e(X), \varepsilon) \stackrel{d}{=} X$ irrespective of the latent dimension.
- Distributional Principal Autoencoder (DPA):
- engression applied to X|e(X)

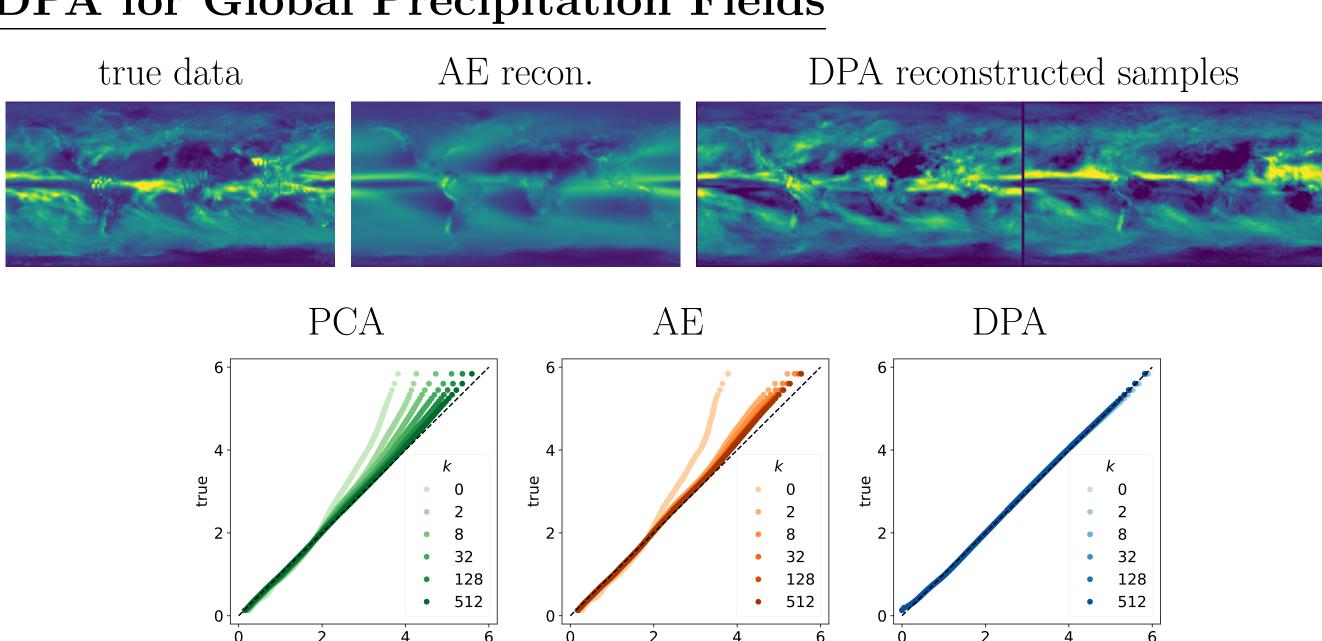
$$\min_{e,d} \mathbb{E} \Big[\|X - d(e(X), \varepsilon)\| - \frac{1}{2} \|d(e(X), \varepsilon) - d(e(X), \varepsilon')\| \Big].$$

Climate Applications

Engression for Downscaling with M. Schillinger, M. Samarin, R. Knutti, and N. Meinshausen



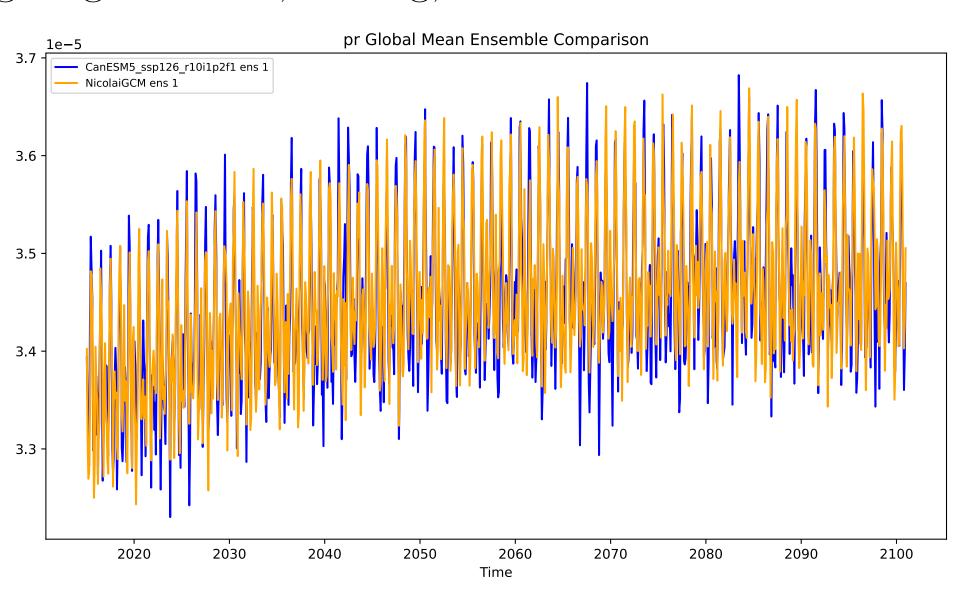
DPA for Global Precipitation Fields



Q-Q plots of precipitations at a random location for test data vs. fitted reconstructions

Engression + RML [5] for Global Climate Model Emulation

Goal: the conditional distribution of global monthly precipitation on a 180×360 grid given time, forcing, etc.



• blue: test data from GCM (weeks on $10^3 - 10^4$ CPU's); • orange: sampled time-series (a few minutes on single low-end GPU)